Contents

	Ackı	nowledgments	page viii	
1	Introduction			
	1.1	Probabilistic Surprises	1 5	
	1.2	Summary	12	
	1.3	Exercises	13	
2	Random Walks			
	2.1	Random Walks in 1D	16	
	2.2	Derivation of the Diffusion Equation for Random Walks in Arbitrary		
		Spatial Dimension	18	
	2.3	Markov Processes and Markov Chains	24	
	2.4	Google PageRank: Random Walks on Networks as an Example		
		of a Useful Markov Chain	25	
	2.5	Relation between Markov Chains and the Diffusion Equation	30	
	2.6	Summary	32	
	2.7	Exercises	32	
3	Langevin and Fokker–Planck Equations and Their Applications			
	3.1	Application of a Discrete Langevin Equation to a Biological Problem	45	
	3.2	The Black–Scholes Equation: Pricing Options	51	
	3.3	Another Example: The "Well Function" in Hydrology	60	
	3.4	Summary	62	
	3.5	Exercises	63	
4	Escape Over a Barrier			
	4.1	Setting Up the Escape-Over-a-Barrier Problem	70	
	4.2	Application to the 1D Escape Problem	71	
	4.3	Deriving Langer's Formula for Escape-Over-a-Barrier in Any		
		Spatial Dimension	73	
	4.4	Summary	79	
	4.5	Exercises	79	

5	Noise				
	5.1	Telegraph Noise: Power Spectrum Associated with a Two-Level-System	83		
	5.2	From Telegraph Noise to $1/f$ Noise via the Superposition of Many Two-			
		Level-Systems	88		
	5.3	Power Spectrum of a Signal Generated by a Langevin Equation	89		
	5.4	Parseval's Theorem: Relating Energy in the Time and Frequency Domain	90		
	5.5	Summary	92		
	5.6	Exercises	92		
6	Generalized Central Limit Theorem and Extreme Value Statistics				
	6.1	Probability Distribution of Sums: Introducing the Characteristic Function	98		
	6.2	Approximating the Characteristic Function at Small Frequencies for Distributions with Finite Variance	99		
	6.3	Central Region of CLT: Where the Gaussian Approximation Is Valid	100		
	6.4	Sum of a Large Number of Positive Random Variables: Universal			
		Description in Laplace Space	103		
	6.5	Application to Slow Relaxations: Stretched Exponentials	106		
	6.6	Example of a Stable Distribution: Cauchy Distribution	108		
	6.7	Self-Similarity of Running Sums	109		
	6.8	Generalized CLT via an RG-Inspired Approach	110		
	6.9	Exploring the Stable Distributions Numerically	118		
	6.10	RG-Inspired Approach for Extreme Value Distributions	120		
	6.11	Summary	127		
	6.12	Exercises	128		
7	Anomalous Diffusion 13				
	7.1	Continuous Time Random Walks	134		
	7.2	Lévy Flights: When the Variance Diverges	137		
	7.3	Propagator for Anomalous Diffusion	138		
	7.4	Back to Normal Diffusion	139		
	7.5	Ergodicity Breaking: When the Time Average and the Ensemble			
		Average Give Different Results	139		
	7.6	Summary	140		
	7.7	Exercises	141		
8	Random Matrix Theory				
	8.1	Level Repulsion between Eigenvalues: The Birth of RMT	145		
	8.2	Wigner's Semicircle Law for the Distribution of Eigenvalues	149		
	8.3	Joint Probability Distribution of Eigenvalues	155		
	8.4	Ensembles of Non-Hermitian Matrices and the Circular Law	162		
	8.5	Summary	179		
	8.6	Exercises	180		

9	Percolation Theory		184
	9.1	Percolation and Emergent Phenomena	184
	9.2	Percolation on Trees – and the Power of Recursion	193
	9.3	Percolation Correlation Length and the Size of the Largest Cluster	195
	9.4	Using Percolation Theory to Study Random Resistor Networks	197
	9.5	Summary	202
	9.6	Exercises	203
Appendix A	A Re	view of Basic Probability Concepts and Common Distributions	207
	A.1	Some Important Distributions	208
	A.2	Central Limit Theorem	210
Appendix	В АІ	Brief Linear Algebra Reminder, and Some Gaussian Integrals	211
	B.1	Basic Linear Algebra Facts	211
	B.2	Gaussian Integrals	212
Appendix C Contour Integration and Fourier Transform Refresher			214
	C.1	Contour Integrals and the Residue Theorem	214
	C.2	Fourier Transforms	214
Appendix	D Re	view of Newtonian Mechanics, Basic Statistical Mechanics, and Hessians	217
	D.1	Basic Results in Classical Mechanics	217
	D.2	The Boltzmann Distribution and the Partition Function	218
	D.3	Hessians	218
Appendix	E Mi	nimizing Functionals, the Divergence Theorem, and Saddle-Point	
	Ap	proximations	220
	E.1	Functional Derivatives	220
	E.2	Lagrange Multipliers	220
	E.3	The Divergence Theorem (Gauss's Law)	220
	E.4	Saddle-Point Approximations	221
Appendix	F No	tation, Notation	222
	References		
	Inde	x	232