
































Control Flow

Python Fundamental



Introduction to Control Flow

◆ The process of simple program starts from the first line and executes line by line in order, without skipping or turning. 

◆ However, most program execute depending on different situations to complete more complex tasks. Therefore, flow 

control is needed to assist the program. 



◆ Python's flow control is divided into the following two types:

➢ Select structure：

Execute different program descriptions based on whether the result of the condition is True or False。

➢ Loop structure：

Depending on whether the result of the condition is True or False, some narratives are repeated until a 

certain condition is met.

Statements

Statements

Statements

Condition

True

False

Select Structure                                       Loop Structure

Condition

True
False

Statements

Type of Control Flow



Select structure



Select structure type

◆ The selection structure can be divided into the following types

➢ "One-way → if 

➢ "Two-way → if… else" 

➢ "Multidirectional → if...elif...else" 



Select structure

◆ The selection structure can be used to check conditional expressions, and execute different statements 

based on whether the result of the condition is True or False. 

◆ The program block starts with a colon ":", and then the same block range must have the same indentation. 

◆ Do not mix different amounts of blanks, nor mix blanks and tabs 

100



if condition :

statement(s)

x = 15

y = 10

if x > y:

z = x - y

print(x,"is", z,"bigger than", y)

if-one-way if (if it is true... just do...)

Indent

◆ "If..." is the syntax of one-way selection, which means "if it is true (True), just do...". 

◆ If the conditional expression is true (True), the statement in the indentation is executed; if the conditional expression is not

established (False), the statement in the indentation is not executed. 

◆ Statements(s) must be indented to the right by at least one blank (the default is four), and the indentation must be aligned 

to indicate that these statements are in a block. 

◆ Since Python uses indentation to divide the execution block of the program, the program cannot be indented at will.



score = eval(input("Please enter a score(0 ~ 100)："))

if score >= 60:

print("Pass！")

else:

print("Fail！")

if condition:

statements1

else:

statements2

if...else-bidirectional if (2 choose 1) 

◆ "If...else" is a two-way selection syntax, which means "if it is true (True), ... execute the content of the if block, if it is not 

true (False), execute the content of the else block. 

➢ If the conditional expression is true, statements1 are executed, and statements2 are not executed. 

➢ If the conditional expression is not established, statements2 will be executed instead of statements1.



if condition1:

statements1

elif condition2:

statements2

elif condition3:

statements3

…

else:

statementsN+1

if...elif...else-multi-directional if (multiple choice 1)

◆ "If...elif...else" is a syntax for multi-directional selection, meaning "if it is true...just...if not, then if...is true...just..." 

◆ The elif keyword is short for else if, which can be none, one or more. 

◆ Compared with elif, there can be no or only one else, and it must be placed last. 

◆ Only one set of statements1~~~statmentsN+1 will be executed. 



score = eval(input("Please enter score (0 ~ 100)："))

if score >= 90:

print("Grade A")

elif score >= 80:

print("Grade B")

elif score >= 70:

print("Grade C")

elif score >= 60:

print("Grade D")

else:

print("Fail")

if...elif...else-multi-directional if example



◆ Nested if refers to the if statement contains other if statements, and there is no depth limit. 

◆ Because there is no depth limit, the indentation level must be correct so that no error will occur.

◆ If you want to avoid too deep and difficult to read, it is recommended to adopt multi-directional if...elif...else. 

score = eval(input("Please eneter score(0 ~ 100)："))

if score >= 90:

print("Grade A")

else:

if score >= 80:

print("Grade B")

else:

if score >= 70:

print("Grade C")

else:

if score >= 60:

print("Grade D")

else:

print("Fail")

if-nested if



Looping Structure



Loop structure

◆ Each repetition of the process is called "iteration (repetition operation)", and the result of each iteration will be used as

the initial value of the next iteration. 

◆ Iteration is the activity of repeating the process, the purpose is to reach the desired goal or result, and the loop is the 

way to solve the repeated execution. 

for Looping while Looping



while condition :

suite

◆ When the condition is true (True), the block (suite) calculation is performed. 

◆ After the block is executed, check the conditions again, if it is still true, execute the suite, otherwise start to execute the description 

after the block. 

◆ This repeated structure is called a loop. 

◆ The action of not continuing to execute the block is called jumping out of the loop or leaving the loop. 

Loop structure



while loop

i = 0

while i < 5:

print(i)

i = i + 1

while condition:

statements1

[else:

statements2]

◆ Use the while loop when the number of repetitions is difficult to calculate clearly. 

◆ The syntax of while is as follows: 



answer = input("Please enter Number 「1」:")

while answer!= "1": 

answer = input("It's wrong, please enter again:")

else:

print("Got it!")

while loop



for loop 

◆ The for loop is used when the number of repetitions can be clearly calculated, so the for loop is also called 

"counting loop".



for loop  

for var in iterator:

statements1

range(stop)

range(start, stop [, step])

◆ The syntax of the for loop is as follows. Iterator is an object with order and repetitive operations, such as the 

range() function or an ordered sequence of strings, lists, etc. 

◆ The loop body statements1 must be indented to the right based on the for keyword, which means that it is in 

the for block. The else clause is optional and can be set or omitted.

◆ The syntax of the for loop is as follows. Iterator is an object with order and repetitive operations, such as the 

range() function or an ordered sequence of strings, lists, etc. 

◆ The loop body statements1 must be indented to the right based on the for keyword, which means that it is in 

the for block. The else clause is optional and can be set or omitted. 



for loop-range() function application

1. range(stop)

2. range(start, stop)

3. range(start, stop, step)

# The start value is 0, the end value is 5 (exclusive), and the interval value is a sequence of integers. 

list(range(5)) 

[0, 1, 2, 3, 4] 

# The start value is 1, the end value is 10 (exclusive), the interval value is a sequence of integers 

list(range(1, 10)) 

[1, 2, 3, 4, 5, 6, 7, 8, 9] 

# The start value is 10, the end value is -10 (excluding), the interval value is a sequence of integers of -2 

list(range(10, -10, -2)) 

[10, 8, 6, 4, 2, 0, -2, -4, -6, -8]

◆We can use Python's built-in range() function to generate range objects:



# When i is not equal to the end value of 5, print i; when i is equal to the end value of 5, jump out of the loop.

for i in range(5):

print(i)

name='Bob' 

for i in range(len(name)):

print(i, name[i])

name='Bob' 

for i in name:

print(i)

for loop-range() function application



break & continue 

answer = input("please enter number, -1 for quit:")

while answer!= "36":

if answer.upper() == "-1":

print("Bye! See you Next Time")

break

answer = input("Wrong, please enter number again:")

else:

print("you are right!")

◆ The break statement can be forced to leave the loop, usually used in conjunction with condition judgment.



break & continue 

i = 0

while i < 10:

i = i + 1

if i % 3 != 0:

continue

i = i + 2

print(i)

◆ The continue statement is used to skip the following statement in the loop and return directly to the beginning 

of the loop.



Q & A


