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Preface

• This presentation file is to describe key steps 
and important notes
– cufflinks pipeline
– stringtie pipeline
– rackj pipeline



Files

• https://maccu.project.sinica.edu.tw/20211007/
– AS_20211007ws.pptx

• This file
– walkthrough_cufflinks_20210922.txt

• Steps of cufflinks pipeline
– walkthrough_stringtie_20210922.txt

• Steps of stringtie pipeline
– walkthrough_rackj_20210922.txt

• Steps of rackj pipeline & motif discovery
– ExampleData.tar.gz

• Example dataset

https://maccu.project.sinica.edu.tw/20211007/


The example dataset

• Randomly (1%) extracted from publicly 
available SRA dataset (SRP071829)
– created by Dr. Matzke’s lab, IPMB
– triplicates of control and treatment Arabidopsis 

samples
• a total of 6 samples

– strand specific pair-ended RNAseq
• a total of 12 FASTQ files



Disclaimer

• This part is intended to give useful logs to 
users who has experiences on using linux
environment for computation.

• For those who are not familiar with linux
operation, you may take a look at explanations 
of key steps.

• CAUTION: Better not copy command from this 
PowerPoint file. Office might twist symbols 
like - ' ". 



Walkthroughs

• A fresh new Ubuntu18 environment was 
adopted for installing all necessary programs 
and running all programs
– System related steps might be different for your 

environment
– For a linux system that has been running various 

programs for a while, some installations might had 
already been done.

• All steps are with short comments



Cufflinks pipeline

• 0. install Tophat2, Bowtie2, and cufflinks
– They are all needed for this pipeline 

### 0. install Tophat2, Bowtie2, and cufflinks

ubuntu@ubuntu18:~$ sudo apt install unzip
ubuntu@ubuntu18:~$ sudo apt install python

(download & install bowtie2)
ubuntu@ubuntu18:~$ wget https://downloads.sourceforge.net/projec

ubuntu@ubuntu18:~$ unzip bowtie2-2.4.4-linux-x86_64.zip

ubuntu@ubuntu18:~$ export PATH=/home/ubuntu/bowtie2-2.4.4-linux-
(...)



Cufflinks pipeline

• 1. Download data files and preparation

### 1. Download data files and prepration

(get exmample data files & extract)
ubuntu@ubuntu18:~$ wget https://maccu.project.sinica.edu.tw/2021

ubuntu@ubuntu18:~$ tar -zxvf ExampleData.tar.gz
ubuntu@ubuntu18:~$ cd ExampleData/

(we will align reads using tophat2 so remove existing BAM files)
ubuntu@ubuntu18:~/ExampleData$ rm *.bam



Cufflinks pipeline

• 2. running tophat2
– In addition of building genome index, it is strongly 

suggest to build transcriptome index by Tophat2 
manual.

• Avoiding race condition and saving time.
### 2. running tophat2

(bowtie2 build genome index, this takes time)
ubuntu@ubuntu18:~/ExampleData$ bowtie2-build 
TAIR10_chr_all.fas tair10.genome

(tophat2 build transcriptome index, this takes time)
ubuntu@ubuntu18:~/ExampleData$ tophat2 -G 
TAIR10_GFF3_genes_transposons.gff --transcriptome-
index=tair10.transcriptome/known tair10.genome



Cufflinks pipeline

• 2. running tophat2
– “ls src/*.fq.gz | sort” will output filenames of FASTQ files 

(gzipped) to “perl …”
– The perl oneliner is to pair those paired FASTQ files and 

produce one tophat2 command for mapping them.
– In so doing, you don’t have to enter 6 commands for 6 

samples. You may simply save the oneliner into your work 
log without managing a number of scripts.

(align reads using tophat2, guided with tair10 annotation)
ubuntu@ubuntu18:~/ExampleData$ ls src/*.fq.gz | sort | perl
-ne 'chomp; /.+\/(.+)_R\d\./; push @{$hash{$1}},$_; if(eof){ 
for $k (sort keys %hash){ $cmd="tophat2 -o $k"."_tophat2 -p 
4 --transcriptome-index=tair10.transcriptome/known
tair10.genome @{$hash{$k}}"; print "\nCMD: $cmd\n"; system
$cmd } }'



Cufflinks pipeline

• 2. running tophat2
– When you are using a computing cluster or job 

scheduler, you may replace the “system $cmd” by 
some job submission command.

– Just a personal habit.
– Remove “system $cmd” to see outputted 

commands.
(align reads using tophat2, guided with tair10 annotation)
ubuntu@ubuntu18:~/ExampleData$ ls src/*.fq.gz | sort | perl
-ne 'chomp; /.+\/(.+)_R\d\./; push @{$hash{$1}},$_; if(eof){ 
for $k (sort keys %hash){ $cmd="tophat2 -o $k"."_tophat2 -p 
4 --transcriptome-index=tair10.transcriptome/known
tair10.genome @{$hash{$k}}"; print "\nCMD: $cmd\n"; system
$cmd } }'



Cufflinks pipeline

• 3. running cufflinks programs
– In this very first step, what we have to do is to use 

cufflinks to build one assembly for each sample

(cufflinks, guided assembly)
ubuntu@ubuntu18:~/ExampleData$ ls
*_tophat2/accepted_hits.bam | perl -ne 'chomp; 
/(.+?)_tophat2/; $cmd="cufflinks -o $1_cufflinks -p 4 -g 
TAIR10_GFF3_genes_transposons.gff $_"; print "\nCMD: 
$cmd\n"; system $cmd'

sample A sample B



Cufflinks pipeline

• 3. running cufflinks programs
– Comparison between samples means that we need a 

unified transcriptome. So use cuffmerge to combine 
assemblies.

ubuntu@ubuntu18:~/ExampleData$ cat cuffmerge_gtf.list
control_rep1_cufflinks/transcripts.gtf
control_rep2_cufflinks/transcripts.gtf
(...)
ubuntu@ubuntu18:~/ExampleData$ cuffmerge -p 4 -o cuffmerge -
g TAIR10_GFF3_genes_transposons.gff cuffmerge_gtf.list

sample A sample B merged+ =



Cufflinks pipeline

• 3. running cufflinks programs
– Above steps are for assembly generation. With 

merged assembly, use cuffquant to quantify 
transcripts for each sample.

(cuffquant, guided alignments)
ubuntu@ubuntu18:~/ExampleData$ ls
*_tophat2/accepted_hits.bam | perl -ne 'chomp; 
/(.+?)_tophat2/; $cmd="cuffquant -o $1_cuffquant -p 4 
cuffmerge/merged.gtf $_"; print "\nCMD: $cmd\n"; system
$cmd'

sample A sample B



Cufflinks pipeline

• 3. running cufflinks programs
– With transcripts quantified separately for each 

sample. Use cuffdiff to predict differentially expressed 
isoforms.

(cuffdiff, compute difference)
ubuntu@ubuntu18:~/ExampleData$ cuffdiff -p 4 -o cuffdiff
cuffmerge/merged.gtf
control_rep1_cuffquant/abundances.cxb,control_rep2_cuffquant
/abundances.cxb,control_rep4_cuffquant/abundances.cxb
treatment_rep5_cuffquant/abundances.cxb,treatment_rep7_cuffq
uant/abundances.cxb,treatment_rep9_cuffquant/abundances.cxb

sample A sample B



StringTie pipeline

• 0. install Tophat2, Bowtie2, and StringTie
– They are all needed for this pipeline 

### 0. install Tophat2, Bowtie2, and cufflinks

ubuntu@ubuntu18:~$ sudo apt install unzip
ubuntu@ubuntu18:~$ sudo apt install python

(download & install bowtie2)
ubuntu@ubuntu18:~$ wget https://downloads.sourceforge.net/projec

ubuntu@ubuntu18:~$ unzip bowtie2-2.4.4-linux-x86_64.zip

ubuntu@ubuntu18:~$ export PATH=/home/ubuntu/bowtie2-2.4.4-linux-
(...)



StringTie pipeline

• 1. Download data files and preparation

### 0. install ### 1. Download data files and prepration

(get exmample data files & extract)
ubuntu@ubuntu18:~$ wget https://maccu.project.sinica.edu.tw/2021

ubuntu@ubuntu18:~$ tar -zxvf ExampleData.tar.gz
ubuntu@ubuntu18:~$ cd ExampleData/

(we will align reads using tophat2 so remove existing BAM files)
ubuntu@ubuntu18:~/ExampleData$ rm *.bam



StringTie pipeline

• 2. running tophat2
– In addition of building genome index, it is strongly 

suggest to build transcriptome index by Tophat2 
manual.

• Avoiding race condition and saving time.
### 2. running tophat2

(bowtie2 build genome index, this takes time)
ubuntu@ubuntu18:~/ExampleData$ bowtie2-build 
TAIR10_chr_all.fas tair10.genome

(tophat2 build transcriptome index, this takes time)
ubuntu@ubuntu18:~/ExampleData$ tophat2 -G 
TAIR10_GFF3_genes_transposons.gff --transcriptome-
index=tair10.transcriptome/known tair10.genome



StringTie pipeline

• 2. running tophat2
– The same “ls src/*.fq.gz | sort” + perl oneliner for 

executing tophats
– NOTE: you may switch to any other mapping tools 

as you like. MUST refer StringTie official website!

(align reads using tophat2, guided with tair10 annotation)
ubuntu@ubuntu18:~/ExampleData$ ls src/*.fq.gz | sort | perl
-ne 'chomp; /.+\/(.+)_R\d\./; push @{$hash{$1}},$_; if(eof){ 
for $k (sort keys %hash){ $cmd="tophat2 -o $k"."_tophat2 -p 
4 --transcriptome-index=tair10.transcriptome/known
tair10.genome @{$hash{$k}}"; print "\nCMD: $cmd\n"; system
$cmd } }'



StringTie pipeline

• 3. running stringtie programs
– It seems that stringtie doesn’t recognize TAIR10 

GFF3 file well. So I decide to translate this GFF3 
file into a GTF file.

– Only exon and pseudogenic_exon records were 
handled.

(translate TAIR10 GFF3 into GTF)
ubuntu@ubuntu18:~/ExampleData$ cat
TAIR10_GFF3_genes_transposons.gff | perl -ne
'@t=split(/\t/); print if ($t[2] eq "exon") || ($t[2] eq
"pseudogenic_exon")' | perl -ne 'chomp; @t=split(/\t/); 
$t[8]=~/Parent=(.+?)\.(.+)/; $t[2]="exon"; $t[8]="gene_id
\"$1\"; transcript_id \"$1.$2\";"; print join("\t",@t)."\n"' 
> tair10.gtf



The GFF3 format

• It is common to see that genome annotations 
are stored in a GFF3 format file
– Usually in download area of the genome’s official 

website, which should be with the genome’s 
FASTA file.

• NOTE: if there is a README file, must check it.

• A GFF3 file storing genome annotation tells 
you which genes are at where of the genome.



The GFF3 format
• A GFF3 file also stores hierarchy of recorded 

objects.



The GTF format

• Can be considered as a previous version of 
GFF3
– which usually stores only exon regions
– plus gene id and transcript id for each exon.



StringTie pipeline

• 3. running stringtie programs
– In this very first step, what we have to do is to use 

stringtie to build one assembly for each sample

(stringtie, guided assembly)
ubuntu@ubuntu18:~/ExampleData$ ls
*_tophat2/accepted_hits.bam | perl -ne 'chomp; 
/(.+?)_tophat2/; $cmd="stringtie $_ -o $1.gtf -p 4 -G 
tair10.gtf"; print "\nCMD: $cmd\n"; system $cmd'

sample A sample B



StringTie pipeline

• 3. running stringtie programs
– Comparison between samples means that we need a 

unified transcriptome. So use “stringtie --merge” to 
combine assemblies.

(stringtie, merge mode, combine assemblies of replicates
into one master transcriptome)
ubuntu@ubuntu18:~/ExampleData$ stringtie --merge -G 
tair10.gtf -o merged.gtf control_rep1.gtf control_rep2.gtf 
control_rep4.gtf treatment_rep5.gtf treatment_rep7.gtf 
treatment_rep9.gtf

sample A sample B merged+ =



StringTie pipeline
• 3. running stringtie programs

– Above steps are for assembly generation. With merged 
assembly, use stringtie with option “-eB” to produce counts for 
transcripts.

– NOTE: -o must be assigned to a separate subfolder for each 
sample because stringtie are outputting all count files with 
exactly the same names.

(stringtie, generate tables)
ubuntu@ubuntu18:~/ExampleData$ ls
*_tophat2/accepted_hits.bam | perl -ne 'chomp; 
/(.+?)_tophat2/; $cmd="stringtie $_ -eB -o $1/$1.gtf -p 4 -G 
merged.gtf"; print "\nCMD: $cmd\n"; system $cmd'

sample A sample B



StringTie pipeline

• Count files in the same names
ubuntu@ubuntu18:~/ExampleData$ ls -l */*.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2826155 Oct  5 17:11 control_rep1/e2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 11682721 Oct  5 17:11 control_rep1/e_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2246980 Oct  5 17:11 control_rep1/i2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 5092894 Oct  5 17:11 control_rep1/i_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 3554980 Oct  5 17:11 control_rep1/t_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2826155 Oct  5 17:11 control_rep2/e2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 11684916 Oct  5 17:11 control_rep2/e_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2246980 Oct  5 17:11 control_rep2/i2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 5093349 Oct  5 17:11 control_rep2/i_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 3555067 Oct  5 17:11 control_rep2/t_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2826155 Oct  5 17:11 control_rep4/e2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 11679732 Oct  5 17:11 control_rep4/e_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2246980 Oct  5 17:11 control_rep4/i2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 5092408 Oct  5 17:11 control_rep4/i_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 3554974 Oct  5 17:11 control_rep4/t_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2826155 Oct  5 17:11 treatment_rep5/e2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 11682131 Oct  5 17:11 treatment_rep5/e_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2246980 Oct  5 17:11 treatment_rep5/i2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 5093373 Oct  5 17:11 treatment_rep5/i_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 3554953 Oct  5 17:11 treatment_rep5/t_data.ctab



StringTie pipeline

• 3. running stringtie programs
– The logic of stringtie is to collect counts in all those 

count files to some other program for differential 
analysis.

– We use “prepDE.py” (comes with stringtie package) to 
generate a table of isoform read counts and sent it to 
DESeq2 for differential analysis.

(generate gene read counts/transcript read counts)
ubuntu@ubuntu18:~/ExampleData$ prepDE.py

ubuntu@ubuntu18:~/ExampleData$ ls *.csv
gene_count_matrix.csv  transcript_count_matrix.csv



StringTie pipeline

• 4. R for differential expression
– To run DESeq2, we have to install R

• All steps are from R official website for ubuntu

(install R for ubuntu, steps from R offical website)
ubuntu@ubuntu18:~$ sudo apt update -qq
ubuntu@ubuntu18:~$ sudo apt install --no-install-recommends
software-properties-common dirmngr
ubuntu@ubuntu18:~$ wget -qO- https://cloud.r-
project.org/bin/linux/ubuntu/marutter_pubkey.asc | sudo tee
-a /etc/apt/trusted.gpg.d/cran_ubuntu_key.asc
ubuntu@ubuntu18:~$ sudo add-apt-repository "deb
https://cloud.r-project.org/bin/linux/ubuntu $(lsb_release -
cs)-cran40/"



StringTie pipeline

• 4. R for differential expression
– To make DESeq2 be installed in R, there are a number 

of system packages need to be installed
– NOTE: different packages might be needed under 

different environment. You have to check error 
messageS when executing R commands in the next 
slide

• No worry, somebody might have had got the same error 
message. So just google the error message with “DESeq2”

(install necessary packages for DESeq2)
ubuntu@ubuntu18:~$ sudo apt install libxml2-dev libcurl4-
openssl-dev libssl-dev libpng-dev libblas-dev liblapack-dev
libgfortran3 gfortran



StringTie pipeline

• 4. R for differential expression
– Enter R, install Bioconductor, and install DESeq2
– load the library by “library(DESeq2)”

ubuntu@ubuntu18:~/ExampleData$ R

(install bioconductor & DESeq2)
> if (!requireNamespace("BiocManager", quietly = TRUE))
+     install.packages("BiocManager")
Installing package into ‘/usr/local/lib/R/site-library’
(as ‘lib’ is unspecified)
Warning in install.packages("BiocManager") :
'lib = "/usr/local/lib/R/site-library"' is not writable

Would you like to use a personal library instead? (yes/No/cancel) yes
Would you like to create a personal library
‘~/R/x86_64-pc-linux-gnu-library/4.1’
to install packages into? (yes/No/cancel) yes

> BiocManager::install("DESeq2")

> library(DESeq2)



StringTie pipeline
• 4. R for differential expression

– Load transcript count CSV file
– Visual confirm column headers

• controlx3 and treatmentx3
> countData <- as.matrix(read.csv("transcript_count_matrix.csv", 
row.names="transcript_id"))
> head(countData)

control_rep1 control_rep2 control_rep4 treatment_rep5
AT4G04480.1            0            0            0              0
AT1G07730.2            0            0            0              0
AT1G38430.1            0            0            0              0
AT1G03340.1            7            4            4              4
AT2G25040.1            0            0            0              0
AT1G04440.1           52           68           88            106

treatment_rep7 treatment_rep9
AT4G04480.1              0              0
AT1G07730.2              0              2
AT1G38430.1              0              0
AT1G03340.1              4             11
AT2G25040.1              0              0
AT1G04440.1             85            113



StringTie pipeline
• 4. R for differential isoform expression

– The following R commands should output a CVS file named 
desqOut.csv, which can be opened directly by Excel

– CAUTION: the use of condition= c("A","A","A","B","B","B") 
is only working for comparisons of two conditions

> condition= c("A","A","A","B","B","B")
> df = data.frame(condition,row.names=colnames(countData))
> dds <- DESeqDataSetFromMatrix(countData,colData=df,design=~condition)
> dds <- DESeq(dds)
> res <- results(dds)
> write.csv(as.data.frame(res),file="desqOut.csv")
> quit()
Save workspace image? [y/n/c]: n

ubuntu@ubuntu18:~/ExampleData$ head -3 desqOut.csv
"","baseMean","log2FoldChange","lfcSE","stat","pvalue","padj"
"AT4G04480.1",0,NA,NA,NA,NA,NA
"AT1G07730.2",0.322550149365598,1.8429268299077,4.03846570623945,0.456343



rackj pipeline

• Here are general description of rackj pipelines
• Steps 0&1: make the environment and data 

ready
• Step 2: mapping reads to the genome 

(optional)
• Step 3: a LOT of commands that compute and 

compare numbers



rackj pipeline

• Next slides are descriptions on what numbers 
were computed and saved in which files.

• They can be used not only for alternative 
splicing analyses.



rackj pipeline

• geneRPKM (by RPKMComputer)
– a read count example

GeneID Length #Reads RPKM multi/ALL
AT1G01080 1.322 20 32.4825 0

20/(1.322x0.465) 
= 32.48



rackj pipeline

• geneRPKM (by RPKMComputer)
– another read count example

GeneID Length #Reads RPKM multi/ALL #uniq
AT1G69280 2.743 1.794721 1.404824 0.44281 1

AT1G69290 1.977 4.205279 4.567085 0.524407 2

1.79x(1-0.443)=1

multi reads



rackj pipeline
• exonCount/intronCount (RPKMComputer/ExonCounter -intronic 

true)
GeneID exonNo #Reads exonLen multi/ALL
AT1G01020 1 0 336 0

AT1G01020 2 1 633 0

AT1G01020 3 4 294 0

AT1G01020 4 4 86 0

exon 3 in the 
merged model

Numbering orientation 
follows the chromosome



rackj pipeline

• spliceCount (by RPKMComputer)
– Jumping: skip some exon
– Novel: this jumping is novel

GeneID exonPair #Reads Jumping Novel splicingPosFreq

AT1G03910 7<=>9 2.0 V {45=1, 70=1}

Numbering orientation

exon 7 exon 9

45bps

70bps



rackj pipeline

• fineSplice (by FineSpliceCounter)
– Gives better resolution, in terms of splicing 

junctions, than spliceCount
GeneID Splice #Reads Novel splicingPosFreq
AT1G01650 10(-11)-11(0) 1V {71=1}

11 bps in exon 10 spliced



rackj pipeline

• fineSplice (by FineSpliceCounter)
– We developed a system of notations to denote splicing 

junctions and called them splicing patterns
• http://rackj.sourceforge.net/SpecialScripts/index.html#SeqGenAS

– The most commonly used pattern is exonA(relativePosA)-
exonB(relativePosB), for splicing junctions between two 
exons

• A negative(positive) relative position means that the splicing site 
is inside(outside) the exon, and a zero relative position means that 
the splicing site agrees with that in the database.

http://rackj.sourceforge.net/SpecialScripts/index.html#SeqGenAS


rackj pipeline

• The unified notation for splicing patterns 
makes it possible to record various kinds of 
read counts
– Thus various kinds of comparisons.



rackj pipeline

• Final comparison tables

Filename Alternative splicing type Merged sample?
SSDAs_*.xls alternative donor/accepter separate samples
SSESs_*.xls alternative exon skipping separate samples
SSIRs_*.xls alternative intron retention separate samples

SSDAm_*.xls alternative donor/accepter merged samples

SSESm_*.xls alternative exon skipping merged samples

SSIRm_*.xls alternative intron retention merged samples



rackj pipeline

• Comparisons of merged samples are based on 
aggregated numbers of reads of separate 
samples => higher statistical power

• Comparisons of separate samples taking cares 
of replications by applying T-TESTs



rackj pipeline

• In each table, look for columns headered by 
“P-value” or “TTEST” for P-values
– The first P-value indicates alternative splicing
– The second P-value (if any) indicates deviation 

from the constitutional form
• the constitutional form: the form mostly expressed in 

the compared samples



Cases to be checked

• AT4G34150 for intron retention
• AT2G41100 for intron retention
• AT4G16695 for exon skipping
• AT1G23080 for alternative donor/accepter
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