
Alternative-splicing detection by 
NGS

walk-through part

Wen-Dar Lin
Bioinformatics core, IPMB



Preface

• This presentation file is to describe key steps 
and important notes
– cufflinks pipeline
– stringtie pipeline
– rackj pipeline



Files

• https://maccu.project.sinica.edu.tw/20211007/
– AS_20211007ws.pptx

• This file
– walkthrough_cufflinks_20210922.txt

• Steps of cufflinks pipeline
– walkthrough_stringtie_20210922.txt

• Steps of stringtie pipeline
– walkthrough_rackj_20210922.txt

• Steps of rackj pipeline & motif discovery
– ExampleData.tar.gz

• Example dataset

https://maccu.project.sinica.edu.tw/20211007/


The example dataset

• Randomly (1%) extracted from publicly 
available SRA dataset (SRP071829)
– created by Dr. Matzke’s lab, IPMB
– triplicates of control and treatment Arabidopsis 

samples
• a total of 6 samples

– strand specific pair-ended RNAseq
• a total of 12 FASTQ files



Disclaimer

• This part is intended to give useful logs to 
users who has experiences on using linux
environment for computation.

• For those who are not familiar with linux
operation, you may take a look at explanations 
of key steps.

• CAUTION: Better not copy command from this 
PowerPoint file. Office might twist symbols 
like - ' ". 



Walkthroughs

• A fresh new Ubuntu18 environment was 
adopted for installing all necessary programs 
and running all programs
– System related steps might be different for your 

environment
– For a linux system that has been running various 

programs for a while, some installations might had 
already been done.

• All steps are with short comments



Cufflinks pipeline

• 0. install Tophat2, Bowtie2, and cufflinks
– They are all needed for this pipeline 

### 0. install Tophat2, Bowtie2, and cufflinks

ubuntu@ubuntu18:~$ sudo apt install unzip
ubuntu@ubuntu18:~$ sudo apt install python

(download & install bowtie2)
ubuntu@ubuntu18:~$ wget https://downloads.sourceforge.net/projec

ubuntu@ubuntu18:~$ unzip bowtie2-2.4.4-linux-x86_64.zip

ubuntu@ubuntu18:~$ export PATH=/home/ubuntu/bowtie2-2.4.4-linux-
(...)



Cufflinks pipeline

• 1. Download data files and preparation

### 1. Download data files and prepration

(get exmample data files & extract)
ubuntu@ubuntu18:~$ wget https://maccu.project.sinica.edu.tw/2021

ubuntu@ubuntu18:~$ tar -zxvf ExampleData.tar.gz
ubuntu@ubuntu18:~$ cd ExampleData/

(we will align reads using tophat2 so remove existing BAM files)
ubuntu@ubuntu18:~/ExampleData$ rm *.bam



Cufflinks pipeline

• 2. running tophat2
– In addition of building genome index, it is strongly 

suggest to build transcriptome index by Tophat2 
manual.

• Avoiding race condition and saving time.
### 2. running tophat2

(bowtie2 build genome index, this takes time)
ubuntu@ubuntu18:~/ExampleData$ bowtie2-build 
TAIR10_chr_all.fas tair10.genome

(tophat2 build transcriptome index, this takes time)
ubuntu@ubuntu18:~/ExampleData$ tophat2 -G 
TAIR10_GFF3_genes_transposons.gff --transcriptome-
index=tair10.transcriptome/known tair10.genome



Cufflinks pipeline

• 2. running tophat2
– “ls src/*.fq.gz | sort” will output filenames of FASTQ files 

(gzipped) to “perl …”
– The perl oneliner is to pair those paired FASTQ files and 

produce one tophat2 command for mapping them.
– In so doing, you don’t have to enter 6 commands for 6 

samples. You may simply save the oneliner into your work 
log without managing a number of scripts.

(align reads using tophat2, guided with tair10 annotation)
ubuntu@ubuntu18:~/ExampleData$ ls src/*.fq.gz | sort | perl
-ne 'chomp; /.+\/(.+)_R\d\./; push @{$hash{$1}},$_; if(eof){ 
for $k (sort keys %hash){ $cmd="tophat2 -o $k"."_tophat2 -p 
4 --transcriptome-index=tair10.transcriptome/known
tair10.genome @{$hash{$k}}"; print "\nCMD: $cmd\n"; system
$cmd } }'



Cufflinks pipeline

• 2. running tophat2
– When you are using a computing cluster or job 

scheduler, you may replace the “system $cmd” by 
some job submission command.

– Just a personal habit.
– Remove “system $cmd” to see outputted 

commands.
(align reads using tophat2, guided with tair10 annotation)
ubuntu@ubuntu18:~/ExampleData$ ls src/*.fq.gz | sort | perl
-ne 'chomp; /.+\/(.+)_R\d\./; push @{$hash{$1}},$_; if(eof){ 
for $k (sort keys %hash){ $cmd="tophat2 -o $k"."_tophat2 -p 
4 --transcriptome-index=tair10.transcriptome/known
tair10.genome @{$hash{$k}}"; print "\nCMD: $cmd\n"; system
$cmd } }'



Cufflinks pipeline

• 3. running cufflinks programs
– In this very first step, what we have to do is to use 

cufflinks to build one assembly for each sample

(cufflinks, guided assembly)
ubuntu@ubuntu18:~/ExampleData$ ls
*_tophat2/accepted_hits.bam | perl -ne 'chomp; 
/(.+?)_tophat2/; $cmd="cufflinks -o $1_cufflinks -p 4 -g 
TAIR10_GFF3_genes_transposons.gff $_"; print "\nCMD: 
$cmd\n"; system $cmd'

sample A sample B



Cufflinks pipeline

• 3. running cufflinks programs
– Comparison between samples means that we need a 

unified transcriptome. So use cuffmerge to combine 
assemblies.

ubuntu@ubuntu18:~/ExampleData$ cat cuffmerge_gtf.list
control_rep1_cufflinks/transcripts.gtf
control_rep2_cufflinks/transcripts.gtf
(...)
ubuntu@ubuntu18:~/ExampleData$ cuffmerge -p 4 -o cuffmerge -
g TAIR10_GFF3_genes_transposons.gff cuffmerge_gtf.list

sample A sample B merged+ =



Cufflinks pipeline

• 3. running cufflinks programs
– Above steps are for assembly generation. With 

merged assembly, use cuffquant to quantify 
transcripts for each sample.

(cuffquant, guided alignments)
ubuntu@ubuntu18:~/ExampleData$ ls
*_tophat2/accepted_hits.bam | perl -ne 'chomp; 
/(.+?)_tophat2/; $cmd="cuffquant -o $1_cuffquant -p 4 
cuffmerge/merged.gtf $_"; print "\nCMD: $cmd\n"; system
$cmd'

sample A sample B



Cufflinks pipeline

• 3. running cufflinks programs
– With transcripts quantified separately for each 

sample. Use cuffdiff to predict differentially expressed 
isoforms.

(cuffdiff, compute difference)
ubuntu@ubuntu18:~/ExampleData$ cuffdiff -p 4 -o cuffdiff
cuffmerge/merged.gtf
control_rep1_cuffquant/abundances.cxb,control_rep2_cuffquant
/abundances.cxb,control_rep4_cuffquant/abundances.cxb
treatment_rep5_cuffquant/abundances.cxb,treatment_rep7_cuffq
uant/abundances.cxb,treatment_rep9_cuffquant/abundances.cxb

sample A sample B



StringTie pipeline

• 0. install Tophat2, Bowtie2, and StringTie
– They are all needed for this pipeline 

### 0. install Tophat2, Bowtie2, and cufflinks

ubuntu@ubuntu18:~$ sudo apt install unzip
ubuntu@ubuntu18:~$ sudo apt install python

(download & install bowtie2)
ubuntu@ubuntu18:~$ wget https://downloads.sourceforge.net/projec

ubuntu@ubuntu18:~$ unzip bowtie2-2.4.4-linux-x86_64.zip

ubuntu@ubuntu18:~$ export PATH=/home/ubuntu/bowtie2-2.4.4-linux-
(...)



StringTie pipeline

• 1. Download data files and preparation

### 0. install ### 1. Download data files and prepration

(get exmample data files & extract)
ubuntu@ubuntu18:~$ wget https://maccu.project.sinica.edu.tw/2021

ubuntu@ubuntu18:~$ tar -zxvf ExampleData.tar.gz
ubuntu@ubuntu18:~$ cd ExampleData/

(we will align reads using tophat2 so remove existing BAM files)
ubuntu@ubuntu18:~/ExampleData$ rm *.bam



StringTie pipeline

• 2. running tophat2
– In addition of building genome index, it is strongly 

suggest to build transcriptome index by Tophat2 
manual.

• Avoiding race condition and saving time.
### 2. running tophat2

(bowtie2 build genome index, this takes time)
ubuntu@ubuntu18:~/ExampleData$ bowtie2-build 
TAIR10_chr_all.fas tair10.genome

(tophat2 build transcriptome index, this takes time)
ubuntu@ubuntu18:~/ExampleData$ tophat2 -G 
TAIR10_GFF3_genes_transposons.gff --transcriptome-
index=tair10.transcriptome/known tair10.genome



StringTie pipeline

• 2. running tophat2
– The same “ls src/*.fq.gz | sort” + perl oneliner for 

executing tophats
– NOTE: you may switch to any other mapping tools 

as you like. MUST refer StringTie official website!

(align reads using tophat2, guided with tair10 annotation)
ubuntu@ubuntu18:~/ExampleData$ ls src/*.fq.gz | sort | perl
-ne 'chomp; /.+\/(.+)_R\d\./; push @{$hash{$1}},$_; if(eof){ 
for $k (sort keys %hash){ $cmd="tophat2 -o $k"."_tophat2 -p 
4 --transcriptome-index=tair10.transcriptome/known
tair10.genome @{$hash{$k}}"; print "\nCMD: $cmd\n"; system
$cmd } }'



StringTie pipeline

• 3. running stringtie programs
– It seems that stringtie doesn’t recognize TAIR10 

GFF3 file well. So I decide to translate this GFF3 
file into a GTF file.

– Only exon and pseudogenic_exon records were 
handled.

(translate TAIR10 GFF3 into GTF)
ubuntu@ubuntu18:~/ExampleData$ cat
TAIR10_GFF3_genes_transposons.gff | perl -ne
'@t=split(/\t/); print if ($t[2] eq "exon") || ($t[2] eq
"pseudogenic_exon")' | perl -ne 'chomp; @t=split(/\t/); 
$t[8]=~/Parent=(.+?)\.(.+)/; $t[2]="exon"; $t[8]="gene_id
\"$1\"; transcript_id \"$1.$2\";"; print join("\t",@t)."\n"' 
> tair10.gtf



The GFF3 format

• It is common to see that genome annotations 
are stored in a GFF3 format file
– Usually in download area of the genome’s official 

website, which should be with the genome’s 
FASTA file.

• NOTE: if there is a README file, must check it.

• A GFF3 file storing genome annotation tells 
you which genes are at where of the genome.



The GFF3 format
• A GFF3 file also stores hierarchy of recorded 

objects.



The GTF format

• Can be considered as a previous version of 
GFF3
– which usually stores only exon regions
– plus gene id and transcript id for each exon.



StringTie pipeline

• 3. running stringtie programs
– In this very first step, what we have to do is to use 

stringtie to build one assembly for each sample

(stringtie, guided assembly)
ubuntu@ubuntu18:~/ExampleData$ ls
*_tophat2/accepted_hits.bam | perl -ne 'chomp; 
/(.+?)_tophat2/; $cmd="stringtie $_ -o $1.gtf -p 4 -G 
tair10.gtf"; print "\nCMD: $cmd\n"; system $cmd'

sample A sample B



StringTie pipeline

• 3. running stringtie programs
– Comparison between samples means that we need a 

unified transcriptome. So use “stringtie --merge” to 
combine assemblies.

(stringtie, merge mode, combine assemblies of replicates
into one master transcriptome)
ubuntu@ubuntu18:~/ExampleData$ stringtie --merge -G 
tair10.gtf -o merged.gtf control_rep1.gtf control_rep2.gtf 
control_rep4.gtf treatment_rep5.gtf treatment_rep7.gtf 
treatment_rep9.gtf

sample A sample B merged+ =



StringTie pipeline
• 3. running stringtie programs

– Above steps are for assembly generation. With merged 
assembly, use stringtie with option “-eB” to produce counts for 
transcripts.

– NOTE: -o must be assigned to a separate subfolder for each 
sample because stringtie are outputting all count files with 
exactly the same names.

(stringtie, generate tables)
ubuntu@ubuntu18:~/ExampleData$ ls
*_tophat2/accepted_hits.bam | perl -ne 'chomp; 
/(.+?)_tophat2/; $cmd="stringtie $_ -eB -o $1/$1.gtf -p 4 -G 
merged.gtf"; print "\nCMD: $cmd\n"; system $cmd'

sample A sample B



StringTie pipeline

• Count files in the same names
ubuntu@ubuntu18:~/ExampleData$ ls -l */*.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2826155 Oct  5 17:11 control_rep1/e2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 11682721 Oct  5 17:11 control_rep1/e_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2246980 Oct  5 17:11 control_rep1/i2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 5092894 Oct  5 17:11 control_rep1/i_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 3554980 Oct  5 17:11 control_rep1/t_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2826155 Oct  5 17:11 control_rep2/e2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 11684916 Oct  5 17:11 control_rep2/e_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2246980 Oct  5 17:11 control_rep2/i2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 5093349 Oct  5 17:11 control_rep2/i_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 3555067 Oct  5 17:11 control_rep2/t_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2826155 Oct  5 17:11 control_rep4/e2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 11679732 Oct  5 17:11 control_rep4/e_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2246980 Oct  5 17:11 control_rep4/i2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 5092408 Oct  5 17:11 control_rep4/i_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 3554974 Oct  5 17:11 control_rep4/t_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2826155 Oct  5 17:11 treatment_rep5/e2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 11682131 Oct  5 17:11 treatment_rep5/e_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 2246980 Oct  5 17:11 treatment_rep5/i2t.ctab
-rw-rw-r-- 1 ubuntu ubuntu 5093373 Oct  5 17:11 treatment_rep5/i_data.ctab
-rw-rw-r-- 1 ubuntu ubuntu 3554953 Oct  5 17:11 treatment_rep5/t_data.ctab



StringTie pipeline

• 3. running stringtie programs
– The logic of stringtie is to collect counts in all those 

count files to some other program for differential 
analysis.

– We use “prepDE.py” (comes with stringtie package) to 
generate a table of isoform read counts and sent it to 
DESeq2 for differential analysis.

(generate gene read counts/transcript read counts)
ubuntu@ubuntu18:~/ExampleData$ prepDE.py

ubuntu@ubuntu18:~/ExampleData$ ls *.csv
gene_count_matrix.csv  transcript_count_matrix.csv



StringTie pipeline

• 4. R for differential expression
– To run DESeq2, we have to install R

• All steps are from R official website for ubuntu

(install R for ubuntu, steps from R offical website)
ubuntu@ubuntu18:~$ sudo apt update -qq
ubuntu@ubuntu18:~$ sudo apt install --no-install-recommends
software-properties-common dirmngr
ubuntu@ubuntu18:~$ wget -qO- https://cloud.r-
project.org/bin/linux/ubuntu/marutter_pubkey.asc | sudo tee
-a /etc/apt/trusted.gpg.d/cran_ubuntu_key.asc
ubuntu@ubuntu18:~$ sudo add-apt-repository "deb
https://cloud.r-project.org/bin/linux/ubuntu $(lsb_release -
cs)-cran40/"



StringTie pipeline

• 4. R for differential expression
– To make DESeq2 be installed in R, there are a number 

of system packages need to be installed
– NOTE: different packages might be needed under 

different environment. You have to check error 
messageS when executing R commands in the next 
slide

• No worry, somebody might have had got the same error 
message. So just google the error message with “DESeq2”

(install necessary packages for DESeq2)
ubuntu@ubuntu18:~$ sudo apt install libxml2-dev libcurl4-
openssl-dev libssl-dev libpng-dev libblas-dev liblapack-dev
libgfortran3 gfortran



StringTie pipeline

• 4. R for differential expression
– Enter R, install Bioconductor, and install DESeq2
– load the library by “library(DESeq2)”

ubuntu@ubuntu18:~/ExampleData$ R

(install bioconductor & DESeq2)
> if (!requireNamespace("BiocManager", quietly = TRUE))
+     install.packages("BiocManager")
Installing package into ‘/usr/local/lib/R/site-library’
(as ‘lib’ is unspecified)
Warning in install.packages("BiocManager") :
'lib = "/usr/local/lib/R/site-library"' is not writable

Would you like to use a personal library instead? (yes/No/cancel) yes
Would you like to create a personal library
‘~/R/x86_64-pc-linux-gnu-library/4.1’
to install packages into? (yes/No/cancel) yes

> BiocManager::install("DESeq2")

> library(DESeq2)



StringTie pipeline
• 4. R for differential expression

– Load transcript count CSV file
– Visual confirm column headers

• controlx3 and treatmentx3
> countData <- as.matrix(read.csv("transcript_count_matrix.csv", 
row.names="transcript_id"))
> head(countData)

control_rep1 control_rep2 control_rep4 treatment_rep5
AT4G04480.1            0            0            0              0
AT1G07730.2            0            0            0              0
AT1G38430.1            0            0            0              0
AT1G03340.1            7            4            4              4
AT2G25040.1            0            0            0              0
AT1G04440.1           52           68           88            106

treatment_rep7 treatment_rep9
AT4G04480.1              0              0
AT1G07730.2              0              2
AT1G38430.1              0              0
AT1G03340.1              4             11
AT2G25040.1              0              0
AT1G04440.1             85            113



StringTie pipeline
• 4. R for differential isoform expression

– The following R commands should output a CVS file named 
desqOut.csv, which can be opened directly by Excel

– CAUTION: the use of condition= c("A","A","A","B","B","B") 
is only working for comparisons of two conditions

> condition= c("A","A","A","B","B","B")
> df = data.frame(condition,row.names=colnames(countData))
> dds <- DESeqDataSetFromMatrix(countData,colData=df,design=~condition)
> dds <- DESeq(dds)
> res <- results(dds)
> write.csv(as.data.frame(res),file="desqOut.csv")
> quit()
Save workspace image? [y/n/c]: n

ubuntu@ubuntu18:~/ExampleData$ head -3 desqOut.csv
"","baseMean","log2FoldChange","lfcSE","stat","pvalue","padj"
"AT4G04480.1",0,NA,NA,NA,NA,NA
"AT1G07730.2",0.322550149365598,1.8429268299077,4.03846570623945,0.456343



rackj pipeline

• Here are general description of rackj pipelines
• Steps 0&1: make the environment and data 

ready
• Step 2: mapping reads to the genome 

(optional)
• Step 3: a LOT of commands that compute and 

compare numbers



rackj pipeline

• Next slides are descriptions on what numbers 
were computed and saved in which files.

• They can be used not only for alternative 
splicing analyses.



rackj pipeline

• geneRPKM (by RPKMComputer)
– a read count example

GeneID Length #Reads RPKM multi/ALL
AT1G01080 1.322 20 32.4825 0

20/(1.322x0.465) 
= 32.48



rackj pipeline

• geneRPKM (by RPKMComputer)
– another read count example

GeneID Length #Reads RPKM multi/ALL #uniq
AT1G69280 2.743 1.794721 1.404824 0.44281 1

AT1G69290 1.977 4.205279 4.567085 0.524407 2

1.79x(1-0.443)=1

multi reads



rackj pipeline
• exonCount/intronCount (RPKMComputer/ExonCounter -intronic 

true)
GeneID exonNo #Reads exonLen multi/ALL
AT1G01020 1 0 336 0

AT1G01020 2 1 633 0

AT1G01020 3 4 294 0

AT1G01020 4 4 86 0

exon 3 in the 
merged model

Numbering orientation 
follows the chromosome



rackj pipeline

• spliceCount (by RPKMComputer)
– Jumping: skip some exon
– Novel: this jumping is novel

GeneID exonPair #Reads Jumping Novel splicingPosFreq

AT1G03910 7<=>9 2.0 V {45=1, 70=1}

Numbering orientation

exon 7 exon 9

45bps

70bps



rackj pipeline

• fineSplice (by FineSpliceCounter)
– Gives better resolution, in terms of splicing 

junctions, than spliceCount
GeneID Splice #Reads Novel splicingPosFreq
AT1G01650 10(-11)-11(0) 1V {71=1}

11 bps in exon 10 spliced



rackj pipeline

• fineSplice (by FineSpliceCounter)
– We developed a system of notations to denote splicing 

junctions and called them splicing patterns
• http://rackj.sourceforge.net/SpecialScripts/index.html#SeqGenAS

– The most commonly used pattern is exonA(relativePosA)-
exonB(relativePosB), for splicing junctions between two 
exons

• A negative(positive) relative position means that the splicing site 
is inside(outside) the exon, and a zero relative position means that 
the splicing site agrees with that in the database.

http://rackj.sourceforge.net/SpecialScripts/index.html#SeqGenAS


rackj pipeline

• The unified notation for splicing patterns 
makes it possible to record various kinds of 
read counts
– Thus various kinds of comparisons.



rackj pipeline

• Final comparison tables

Filename Alternative splicing type Merged sample?
SSDAs_*.xls alternative donor/accepter separate samples
SSESs_*.xls alternative exon skipping separate samples
SSIRs_*.xls alternative intron retention separate samples

SSDAm_*.xls alternative donor/accepter merged samples

SSESm_*.xls alternative exon skipping merged samples

SSIRm_*.xls alternative intron retention merged samples



rackj pipeline

• Comparisons of merged samples are based on 
aggregated numbers of reads of separate 
samples => higher statistical power

• Comparisons of separate samples taking cares 
of replications by applying T-TESTs



rackj pipeline

• In each table, look for columns headered by 
“P-value” or “TTEST” for P-values
– The first P-value indicates alternative splicing
– The second P-value (if any) indicates deviation 

from the constitutional form
• the constitutional form: the form mostly expressed in 

the compared samples



Cases to be checked

• AT4G34150 for intron retention
• AT2G41100 for intron retention
• AT4G16695 for exon skipping
• AT1G23080 for alternative donor/accepter


	Alternative-splicing detection by NGS�walk-through part
	Preface
	Files
	The example dataset
	Disclaimer
	Walkthroughs
	Cufflinks pipeline
	Cufflinks pipeline
	Cufflinks pipeline
	Cufflinks pipeline
	Cufflinks pipeline
	Cufflinks pipeline
	Cufflinks pipeline
	Cufflinks pipeline
	Cufflinks pipeline
	StringTie pipeline
	StringTie pipeline
	StringTie pipeline
	StringTie pipeline
	StringTie pipeline
	The GFF3 format
	The GFF3 format
	The GTF format
	StringTie pipeline
	StringTie pipeline
	StringTie pipeline
	StringTie pipeline
	StringTie pipeline
	StringTie pipeline
	StringTie pipeline
	StringTie pipeline
	StringTie pipeline
	StringTie pipeline
	rackj pipeline
	rackj pipeline
	rackj pipeline
	rackj pipeline
	rackj pipeline
	rackj pipeline
	rackj pipeline
	rackj pipeline
	rackj pipeline
	rackj pipeline
	rackj pipeline
	rackj pipeline
	Cases to be checked

