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INTRODUCTION

The Computational Medicine (CM) Core Lab provides:

Support and Consultation of Data Analysis

Basic NGS Data Processing

Education and Training

Research Collaboration

We have two DELL R7425 computing servers (64 core CPU
and 256G RAM) for doing NGS data analysis
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Basic concept of single cell RNA-seq
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Why consider performing scRNA-seq?

* sScRNA-seq permits comparison of the transcriptomes of individual
cells. Therefore, a major use of scRNA-seq has been to assess
transcriptional similarities and differences within a population of
cells, with early reports revealing previously unappreciated levels of
heterogeneity, for example in embryonic and immune cells
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Droplet based single cell RNA sequencing
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Droplet based single cell RNA sequencing

Cell

barcode UMI
—

CcDNA (50-bp sequenced)
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cDNA alignment to
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However, there are limitations in scRNA-seq:

* low capture efficiency (~8% mRNAs in a cell were captured)
* higher level of technical noise than bulk RNA-seq data
* multi-cells in a droplet (doublet)

 dead cells (high proportion of mitochondrial RNAS)



Standard scRNA-seq data analysis



Read alignment (similar to bulk RNA-seq)

10 / GENOMICS® Products Research Areas  Resources Company

Support > Single Cell Gene Expression » Software SEARCH QA CONTACT SUPPORT

SOFTWARE > PIPELINES

CELL RANGER Creating a Reference Package with cellranger mkref

Introduction

Cell Ranger provides pre-built human (hg19, GRCh38), mouse (mm10), and ercc92 reference packages for
read alignment and gene expression quantification in cellranger count .

To create and use a custom reference package, Cell Ranger requires a reference genome sequence (FASTA
* System Requirements file) and gene annotations (GTF file).

* |nstalling Cell Ranger

Downloads

* Download Links

A tutorial 'Build a Custom Reference With cellranger mkref' is available to walk you through the steps.

* Release Notes

—
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Console

RStudio

i # Go to file/function v Addins ~

© ] Basic_analysis.R @] Biomart.R © | NOlIseq_no_replicate_example_2.r © | NOIseq_with_replicate_example.r © | DEseq2 PCA_€>3) [T
; SourceonSave | (4 / <Run | %% #Source v =
library(dplyr)
library(Seurat)
library(patchwork)
##import data from 10x output folder, QC and selecting cells for further analysis
input.data <- Readl@X(data.dir = "/Volumes/CONTAX/DR_RB_Yang_Scube_genes_expression_profiles_in_endothelial_scRNA-seq_da
W@ <- CreateSeuratObject(counts = input.data, project = "W@", min.cells = 3, min.features = 200)
Ve
W@Ssource <- "WO"

Wo[["percent.mt"]] <- PercentageFeatureSet(W@, pattern = "Amt-")
VinPlot(W@, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

W@ <- NormalizeData(W@, verbose = FALSE)
W@ <- FindVariableFeatures(W@, selection.method = "vst")

##import data from 1@x output folder, QC and selecting cells for further analysis

input.data <- Readl@X(data.dir = "/Volumes/CONTAX/DR_RB_Yang_Scube_genes_expression_profiles_in_endothelial_scRNA-seq_da
W1l <- CreateSeuratObject(counts = input.data, project = "W1", min.cells = 3, min.features = 200)

Wi

Wlssource <- "W1"

Wi[["percent.mt"]] <- PercentageFeatureSet(W1l, pattern = "Amt-")

VinPlot(W1l, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

W1l <- subset(Wl, subset = nFeature_RNA > 200 & nFeature_RNA < 6000 & percent.mt < 15)

W1l <- NormalizeData(Wl, verbose = FALSE)

W1l <- FindVariableFeatures(Wl, selection.method = "vst")

R Script ¢

=0

(Top Level) ¢

Terminal Jobs

/Volumes/Extented-Data/My Drive/temp/LSL_course_sample_data/

R version 4.1.0 (2021-05-18) -- "Camp Pontanezen"
Copyright (C) 2021 The R Foundation for Statistical Computing

Platform:

x86_64-apple-darwinl7.@ (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()" on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

R! Project: (None) ~

Environment  History Connections  Tutorial = ]
=udll e | ~* Import Dataset ~ { List ~ -
"} Global Environment ~

Environment is empty
Files Plots Packages Help Viewer P |
SR

R: Save a ggplot (or other grid object) with sensible defaults +  Find in Topic

ggsave {ggplot2} R Documentation

Save a ggplot (or other grid object) with sensible defaults

Description

ggsave () is a convenient function for saving a plot. It defaults to saving the last plot that you displayed, using the size of the
current graphics device. It also guesses the type of graphics device from the extension.

Usage
ggsave(
filename,
plot = last_plot(),

device = NULL,
path = NULL,

scale = 1,
width = NA,
height = NA,

units = ¢("in", "em", "mm", "px"),
dpi = 300,
limitsize = TRUE,
bg = NULL,
)
Arguments



Web-based scRNA-seq data analysis tool

Tool name Published on Journal name Data Need registration
SingleCAnalyzer 23 May 2022 Frontiers in Bioinformatics FASTQ yes
~cell
ICARUS 10 May 2022 Nucleic Acids Research gene-ce no

count matrix

gene-cell

SC1 5 Aug 2021 Journal of Computational Biology count matrix no
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ABSTRACT

Here we present ICARUS, a web server to en-
able users without experience in R to undertake
single cell RNA-seq analysis. The focal point of
ICARUS is its intuitive tutorial-style user interface,
designed to guide logical navigation through the mul-
titude of pre-processing, analysis and visualization
steps. ICARUS is easily accessible through a ded-
icated web server (https:/launch.icarus-scrnaseq.
cloud.edu.au/) and avoids installation of software on
the user’s computer. Notable features include the fa-
cility to apply quality control thresholds and adjust
dimensionality reduction and cell clustering param-
eters. Data is visualized through 2D/3D UMAP and
t-SNE plots and may be curated to remove poten-
tial confounders such as cell cycle heterogeneity.
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Interactive web server for scRNA-seq analysis
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Welcome to ICARUS (Interactive single Cell RNA-seq Analysis with R shiny Using Seurat) -

This application was designed to guide the user through single cell RNA-seq analysis using the Seurat scRNA-seq analysis toolkit via a tutorial style interface. It offers
user control over each of the steps to personalise analysis based on the dataset of interest. Graphical outputs at each analysis step ensures easy and logical
interpretation.

The purpose of this application is to allow the user to interactively visualize single cell RNA-seq data without the requirement of previous R programming knowledge.

Features include:
1. Tutorial inspired user interface!
2. Support for 11 common species!
3. Adjust your own quality control thresholds!
4. Adjust your own dimensionality reduction and clustering parameters!
5 I
6
7
8
9

. 3D UMAP and t-SNE pIOtS! Interactive single Cell RNA-seq Analysis with Rshiny Using Seurat
. Data correction for cell cycle effects!
. Removal of cell doublets (multiplets) with DoubletFinder!
. Labelling of cell clusters with sctype and SingleR!
. Gene expression and gene pathway visualisation!
10. Trajectory analysis with Monocle3!
11. Differential expression analysis and gene set enrichment analysis with ClusterProfiler and ReactomePA!
12. Custom differential expression analysis with user selected cell groups to compare!
13. Integration with second dataset and adjustment for batch effects!
14. Support for multimodal analysis (i.e. CITE-seq, 10X multiome kit)!
15. Save and continue functionality!
16. Downloadable tables and plots!

Please refer to the "Help" tab on the sidebar menu for troubleshooting.

NEW CONTINUE

Choose from the following Load previously saved
species enviroment
HOMO SAPIENS -
BROWSE...

PRESS START TO BEGIN

THE UNIVERSITY OF Crea_tedpy: Andrew Jiang _
(anms) AUCKLAND CENTRE FOR Email: ajia169@aucklanduni.ac.nz

. ) Applied Translational Genetics Group
Applleg Tralil.slatlonal BRAZNRESEARCH
enetics

Centre for Brain Research
The University of Auckland



Step 1: Load your data

DATA INPUT

A

Single sample

Cell, Cell, Cellg

Gene, 1 2 7
Gene, O 0 1
Gene, 1 0 0
Gene, 5 3 0

Cell,

Column names
must not contain
any underscores

6

10X Files
Barcodes.tsv / \

Features.tsv

Matrix.tsv G E N 0 M I C S®

B

Multiple samples

Gene,

Gene,

Gene,

Gene,

Seurat R Object
(RDS file)

%ve single Cell RNA-seq Analysis with Rshiny Usnc&

S1_Cell, S1_Cell, S2_Cell, S2_Celly
1 2 7 Each sample can
be denoted by an
0 0 1 identifier separated
by an underscore
1 0 0 b
5 3 0 0




Processed data from 10X cellranger

$ cd /home/jdoe/runs/sample345/outs
$ tree filtered_feature_bc_matrix
filtered_feature_bc_matrix

|— barcodes.tsv.gz

|— features.tsv.gz
L — matrix.mtx.gz

@ directories, 3 files

features

Cellt

barcodes

Cell2

. _CellN

Genel| 13
Gene2| 2
Gene3| 1

GeneM 25

2
3
14

0

matrix

13

18



Download gene-cell matrix from database

Single Cell DB

Single Cell DB (Beta)

DRscDB

About

Video Tutorial




Step 2: Quality Control

QUALITY CONTROL WORKFLOW
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PC2

Step 3: Doublet Removal

DOUBLETFINDER WORKFLOW

Original Data Simt:)lztl:ab?er:lficial Me:’%‘i*t :girfii;i:'argzt':'ets Ident_i?/ Real Doublets Remove Real Doublets
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Droplet based single cell RNA sequencing

Single-cell RNA-seq generates doublet artifacts
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Step 4: Dimensionality Reduction

DIMENSIONALITY REDUCTION WORKFLOW

Input Data

Cell, Cell, Cell,

Gene, 1 2 7
Gene, 0 0 1
Gene, 1 0 0
Geney 5 3 0

Normalize and Scale Data

. Cell, Cell
-0.122  4.912

-0.001 -1.362

-0.231 -0.893

-0.589 -0.009

Celly
3.432

-0.235

-0.901

0.005

-p

Dimensionality Reduction

PC2

PC1



t-SNE

Dimensionality reduction

* PCA (principal component analysis)

. . . . Cell types
V I S u a | I Zat I O n . ® Contaminant (including B) @ CD4T @CD8T @ MAIT @NK/ILC T

* tSNE (t-distributed Stochastic Neighbor Embedding)
#2008 #old #slow

* UMAP (Uniform Manifold Approximation and Projection)
#2018 #new #fast
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Step 5: Clustering

CLUSTERING WORKFLOW
t-SNE Clustering
000
N ® OQO 3D Plots!
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Step 6: Data Correction

DATA CORRECTION WORKFLOW

Cell Cycle Effect Gene Effect
Cell Cycle Scoring Regress Cell Cycle Effect Gene Expression Regress Gene Effect
High High
o0 O o0 (] L J
oe’ O o’ ©0 e® 00
& s & N & ..
> OQ ] 2 o ‘
e® o0
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Gene Pathway Effect = o
Gene Pathway Expression Regress Gene Pathway Effect
High High
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UMAP1 UMAP1
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LABELLING WORKFLOW

Step 7: Labelling Clusters

UNMAP2

Find Marker Genes

Marker Genes
- CD14
- CD11b

SO

« CD19
« IgDh

- CD24
-« CD20

Compare Against
Reference Marker * $|'ng|eR Add Labels
Datasets —

Marker Genes
+ CD19

« IgD Clusters
. CD24 — Q

- CD20 Q

Marker Genes
« CD14 ||
« CD11b

+ CD68

UMAP2

Marker Genes Q
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- CD2
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Step 8: Gene Expression
GENE EXPRESSION VISUALISATION

Visualise Gene
Pathways From:

=1 MS |gDB éi ; E
| —— MI Ia r Signatures *
GENEONTOLOGY o s
Unifying Biology

freoctome

Gene expression

UMAP2




Step 9: Trajectory Analysis

TRAJECTORY ANALYSIS WORKFLOW

Assign Root Cells

UMAP2

UMAP1

UMAP2

UMAP1



Step 10: Multimodal Analysis

DATA INPUT (MULTIMODAL ANALYSIS)

A B
Multimodal data

Cell, Cell, Cell; Cell,
Gene; 1 2 7 Column names
must match those 10X Files
Gene, 0 0 1 in the scRNA-seq Barcodes.tsv / \

data Features.tsv

Gene, 1 0 0 9 Matrix.tsv G E N 0 M I CS®

Gene, 5 3 0 0

SEURAT é R toolkit for sing

Seurat R Object
(RDS file) R Make sure
A multimodal data is

saved in “ADT”
assay




Step 11: Differential Expression &
Gene Set Enrichment Analysis

DIFFERENTIAL EXPRESSION AND GENE SET ENRICHMENT ANALYSIS WORKFLOW

PC2

Select Cells to
Compare

PC1

List of Differentially
Expressed Genes

Differentially
expressed genes

IL7R

CYBB

TRAC

IL32

Fold change

-4.150

-4.037

3.563

5

P-value

0.002

0.004

0.02

0.06

—p

Gene Set Enrichment

Analysis
ID Description
G0:0002181 cytoplasmic translation
G0:0002399 MHC class Il protein
complex assembly
G0:0006364 RNA processin g
G0:0006518 peptide metabolic

process

Pathway Analysis
Visualisations

clusterProfiler

PYCARD CTSD

\ /

Antigen processing
P-value

0.001 HLA-DRA
0.009 * HLA-DMA
0.01

HLA-DQA1
0.03

MHC class Il protein complex

/ N\

HLA-DQB1 HLA-DRB1
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