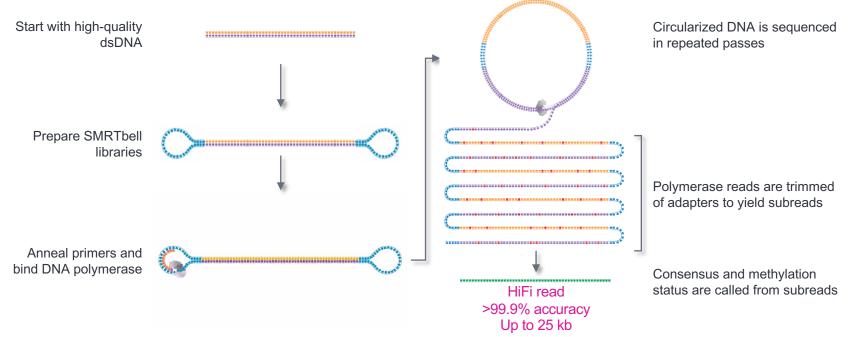
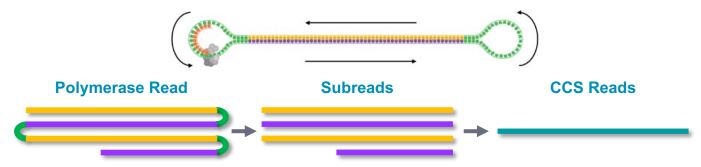
PacBi

Unlock the promise of genomics through PacBio sequencing

Single Molecule Real-time Sequencing Analysis Overview


04 July 2023 彭彦菱 Lynn Peng | Bioinformatics Engineer, Blossombio Taiwan

Single Molecule, Real-Time (SMRT) Sequencing


What are HiFi reads?

HiFi reads are produced using circular consensus sequencing (CCS) on PacBio long-read systems. HiFi reads provide base-level resolution with 99.9% single-molecule read accuracy. HiFi reads are unbiased, no DNA amplification, least GC content and sequence complexity bias

Summary of Read Metrics Definitions and their utility

SMRTbell Template

Definition:

- Sequence of nucleotides incorporated by polymerase while reading a template
- High Quality region only
- Includes adapters
- 1 molecule \rightarrow 1 Polymerase Read

Purpose:

- Sequencing run performance QC

Definition:

Adapters removed

- Library insert size QC

sequence generation

- 1 molecule \rightarrow 1 or more Subreads

Purpose:

- Used for applications requiring

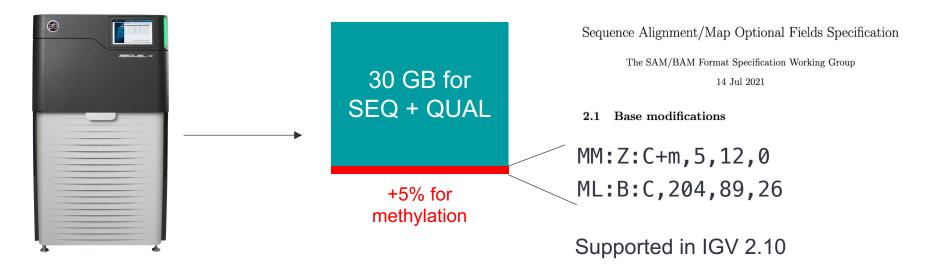
multi-molecule consensus

Definition:

- Represents highest-quality singlesequence for an insert
- 1 molecule \rightarrow 1 CCS read

HiFi read >99% (Q20) accuracy

Purpose:


- Library insert size QC
- Used for applications requiring intra-molecular consensus sequence generation

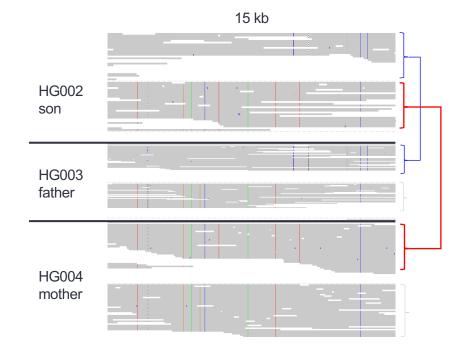
Representation of 5mC CpG data uses BAM format standard

Standard library prep, no extra compute, negligible data footprint, and standardized representation

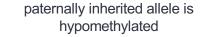
Sequel lle system

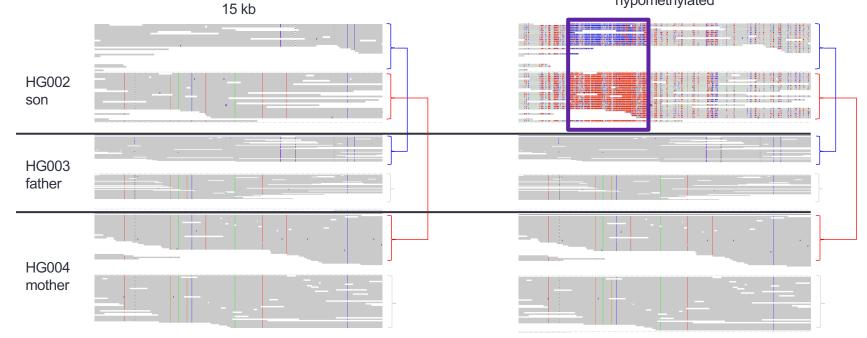
hifi_reads.bam

IGV supports coloring reads by methylation annotation


Rename Track Copy read details to clipboard	
Change Track Color	
Experiment Type	•
Cluster (phase) alignments	
Linked read view (BX)	
Linked read view (MI)	
Link supplementary alignments	
Link by tag	
Group alignments by	•
Sort alignments by	▶
Color alignments by	none
Re-pack alignments	read strand
Shade base by guality	read group
Show mismatched bases	sample
Show all bases	library
Quick consensus mode	movie ZMW
View as pairs	base modification
Set insert size options	tag

Supported in IGV 2.10


Allele-specific methylation (imprinting)


Haplotype phasing reveals parental imprinting in human

Haplotype phasing reveals parental imprinting in human

PEG3 = paternally expressed gene 3

HG002 Sample Dataset – 34× coverage

https://downloads.pacbcloud.com/public/dataset/HG002-CpG-methylation-202202/

Name	<u>Last modifi</u>	.ed	<u>Size</u>
Parent Directory			-
	2022-02-04	08:23	86G
	2022-02-04	11:49	17M
MD5.txt	2022-02-04	13:40	449
	2022-02-04	07:12	933
m64011 190830 220126.hifi reads.bam	2022-02-04	08:29	21G
m64011 190901 095311.hifi reads.bam	2022-02-04	08:33	21G
m64012_190920_173625.hifi_reads.bam	2022-02-04	08:37	22G
m64012_190921_234837.hifi_reads.bam	2022-02-04	08:44	22G

reads aligned to GRCh38 methylation tags Mm/MI & haplotype tags PS/HP

unaligned reads with methylation tags Mm/MI

OVERVIEW

PacBio HiFi reads for HG002/NA24385 from the Human Pangenome Reference Consortium HG002 Data Freeze v1.0. Reads are tagged by haplotype (HP tag) and annotated with CpG methylation status (Mm and Ml tags).

[1] https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0 [2] https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA586863

METHODS

SHEARING	Megaruptor 3 to target size of 20 kb
LIBRARY PREP	SMRTbell Express Template Prep Kit 2.0
SIZE SELECTION	SageELF 15 kb and 20 kb fractions
SEQUENCING	Sequel II System, 30 hr movie, Sequel II Chemistry 2.0
ANALYSIS	Generate HiFi reads with ccs v6.0.0 with `all-kinetics`
	Add CpG methylation annotation with primrose v1.0.0
	Align to GRCh38_no_alt_analysis_set with pbmm2 v1.4.0
	Call variants with DeepVariant 1.0.0 and phase with whatshap 1.0

Understanding Sequencing Coverage and Depth

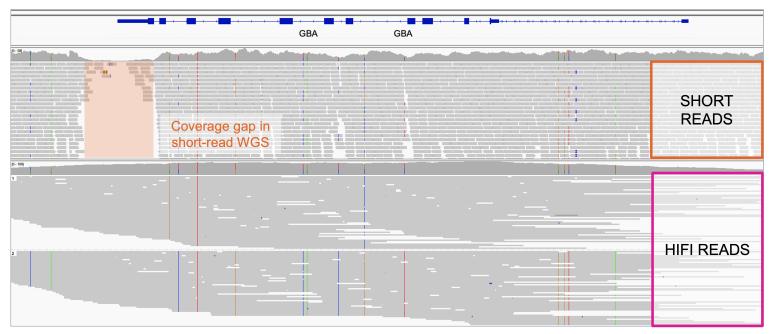
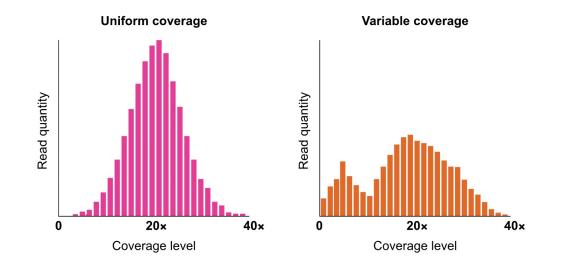
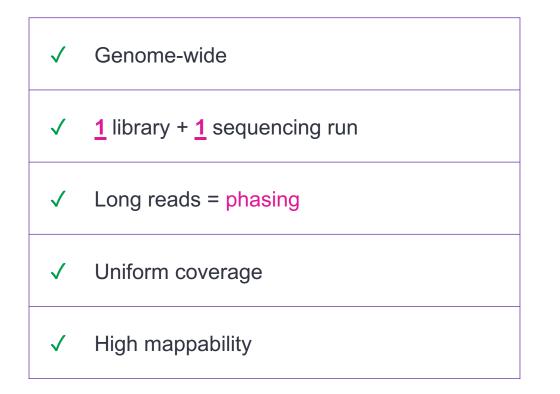



Figure 1. IGV generated image of PacBio long reads (purple section) and short-read alternative (orange section) covering a genomic reference region (blue line and bars at top). Note the area not covered by any reads (grey strips) in the short-read sequence alignment.


Understanding Sequencing Coverage and Depth

Coverage uniformity tells us how evenly distributed individual reads are across the genome or region of interest.

HiFi 5-base sequencing: a complete genome & epigenome

Α С G + 5mC

SMRT Link software overview

Sequel lle System and Software v12

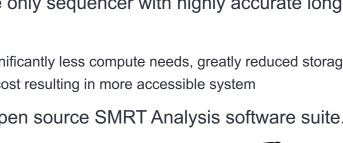
Sequel Ile System - the only sequencer with highly accurate long reads

- off the box •
 - Fast time to results, significantly less compute needs, greatly reduced storage ٠
 - Lower overall solution cost resulting in more accessible system •

SMRT Link – PacBio's open source SMRT Analysis software suite.

Support intuitive GUI or command-line interface

Software Download


DOWNLOAD SMRT LINK V12.0 NEW

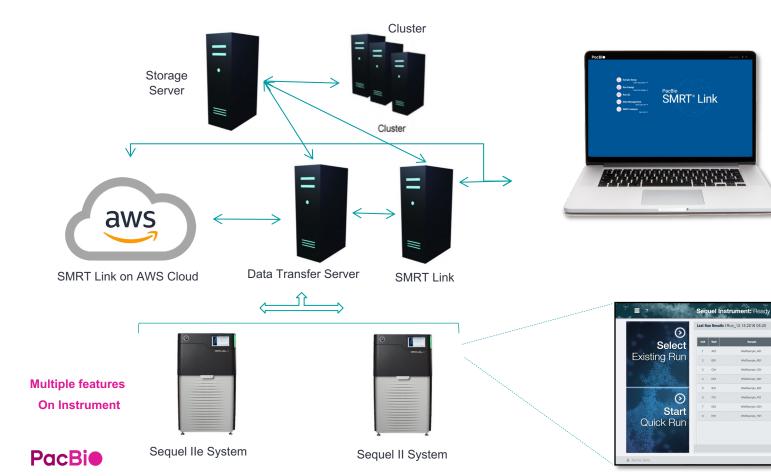
SMRT Link v12.0 supports Revio, Sequel II and Ile systems. v12.0 is required for Revio customers, and is an optional update for Sequel II and Ile system customers. Customers with Sequel systems should use SMRT Link v.10.2.

Please ensure you meet minimum system requirements before upgrading to v12.0. If you are operating SMRT Link without meeting minimum system requirements, please contact PacBio Support to assist with your upgrade.

NOTE: Customers who have not yet migrated from WSO2 to Keycloak for user management in SMRT Link, must migrate before or during the upgrade to SMRT Link v12.0.

Download SMRT Link v12.0

SMRT Cell 8M



SMRT Link

https://www.pacb.com/support/software-downloads/

SMRT Link system

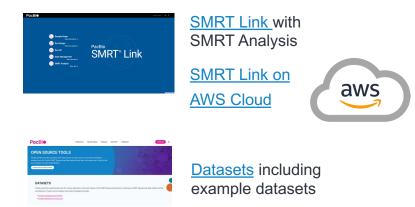
100 - - -100 - - -100 - - -Atom Nos Statu Mo

Not complet

30

Compute requirements Sequel lle system

Head	Head Node											
Cores	32											
RAM	64 GB											
Local Storage	1 TB SSD/Flash storage											
Compu	te Nodes											
Cores (Total)	64											
Minimum RAM per slot (1 slot = 1 core)	>4 GB 64 x 4 = 256 GB RAM											
Local Storage	100 GB											
Shared Da	ata Storage											
Sequencing Data	20 TB [°]											
Analysis Data	40 TB ^a											
Network												
10 GbE strongly recom	mended, 1GbE required ^b											


^aStorage is calculated for one Sequel IIe System, assuming 100 human genomes per year at 30-fold coverage, *de novo* assembly ^bConnection between the Head Node and Sequel IIe System

Server OS: CentOS 7.x and 8.x, and Ubuntu 18.04 and 20.04 64-bit Linux[®] distributions (This also applies to SMRT Link compute nodes.)

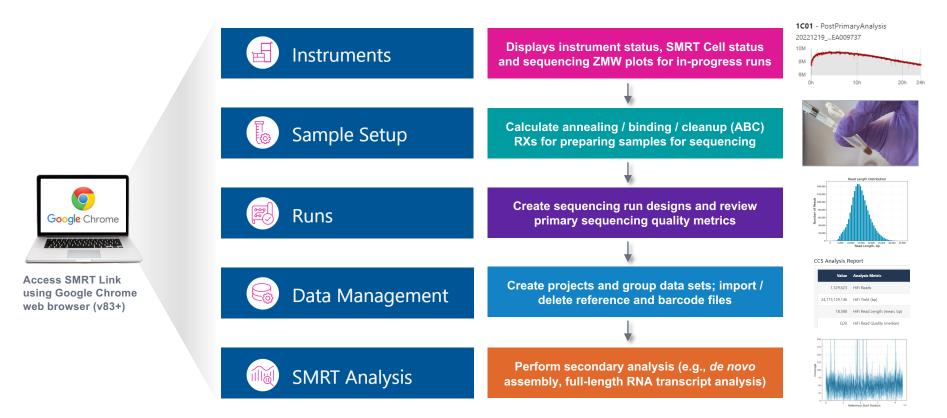
PacBio Software suite and analysis pipeline for SMRT data

Denovo assembly	Improved Phased Assembly (IPA)
Variant Calling	DeepVariant + whatshap + pbsv
Structure variant	pbsv
Isoform detection	Iso-Seq
Single cell isoform	MAS-Seq
Metagenome	HiFi + Third party tools
16S Full-length	HiFi + Third party tools

- Fully automated analysis
- Efficient integration with LIMS and third-party analysis tools
- User-friendly UI design
- Industry-standard output formats: FASTA, FASTQ, SAM/BAM, VCF

Pacifion® tools distributed via flicoconds are: pre-release versions, not necessarily t60 compliant, intended for Research Usic Only and not for use in diagnotic procedures, intended only for command-line users, and possibly merer than the currently available SMRAF Revalpits block. While efforts have been mode to ensure that releases on Bioconda live up to the quality that Pacific achieves for, we nake ne warranty regarding any Bioconda release.

<u>pbbioconda</u>


(developmental tools)

PacBi

SMRT Link GUI overview

SMRT Link v12.0 core functions and organization

SMRT Link v12.0 enhances many core functions, features a new 'Instruments' module and combines Run Design & Run QC into a new 'Runs' module

Applications support documentation

Application notes & best practices guides

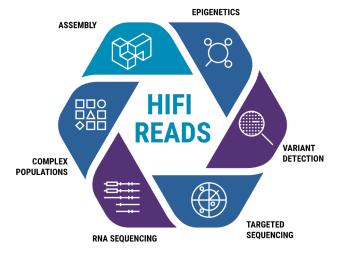
Whole genome sequencing applications

- Application brief Whole genome sequencing for de novo assembly Best practices (102-193-627)
- Application brief Microbial whole genome sequencing Best practices (<u>102-193-601</u>)

RNA sequencing applications

Application note – MAS-Seq for single cell isoform sequencing (<u>102-326-549</u>)

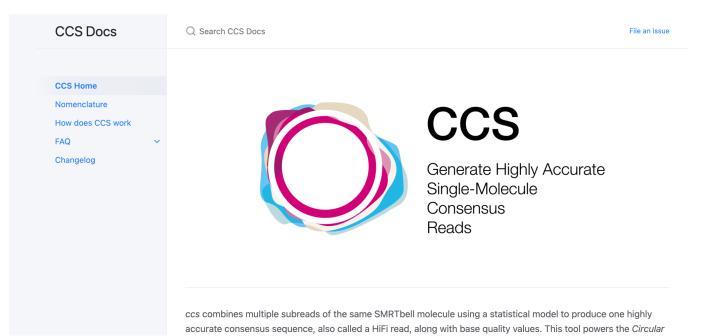
Metagenomics applications


• Application brief – Metagenomic sequencing with HiFi reads – Best practices (102-193-684)

Targeted sequencing applications

- Application brief HiFi target enrichment Best practices (<u>102-193-603</u>)
- Application brief Targeted sequencing for amplicons Best practices (<u>102-193-603</u>)

Application technical overviews


- Technical overview MAS-Seq library preparation using the MAS-Seq for 10x Single Cell 3' kit (<u>102-829-300</u>)
- Technical overview Multiplexed amplicon library preparation using SMRTbell prep kit 3.0 (<u>102-395-900</u>)
- Technical overview Nanobind HT kits for automated HMW DNA extraction (Coming soon)
- Technical overview Whole genome and metagenome library preparation using SMRTbell prep kit 3.0 (<u>102-390-900</u>)

Technical documentation & training resources

SMRT Link & other data analysis documentation

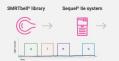
- Brief primer and lexicon for PacBio SMRT sequencing webpage (v12.0)
- PacBio bioinformatics file formats documentation webpage (v12.0)
- SMRT Link v12.0 cloud reference guide (<u>102-978-000</u>)
- SMRT Link v12.0 release notes (<u>102-877-200</u>)
- SMRT Link v12.0 software installation guide (<u>102-878-100</u>)
- SMRT Link v12.0 user guide (<u>102-877-300</u>)
- SMRT Link v12.0 web services API use cases (<u>102-982-400</u>)
- SMRT Tools v12.0 reference guide (<u>102-978-000</u>)

5-base sequencing available now!

MEASURING DNA METHYLATION WITH **5-BASE HIFI SEQUENCING**

Genome-wide detection and phasing of genetic and epigenetic variants from a single library prep

HiFi sequencing produces long, accurate reads of the 4 DNA bases - A, C, G, and T - that deliver the most comprehensive characterization of genomes.1.2


But HiFi sequencing is not limited to characterizing the genome. It simultaneously measures the epigenome by detecting a fifth base - 5mC at CpG sites.

· Detects distinct regional epigenetic patterns

· Accesses methylation in the full genome

Identifies allele-specific methylation

Nucleotide incomposition kinetics are measured in real time

5-base HiFi sequencing with A, C, G, T, +5mC

ACTGACGGACTGATCGACTG SmC encoded with standard BAM tag NM2:C+m4.12.16.4.16,19.44.10 MI:B:C:249.4.247,177,210.228,245,24

The Sequel IIe system directly outputs long, highly accurate HIF

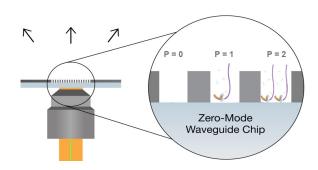
reads with annotation of SmC methylation at all CpG sites. No special library preparation like bisuffice treatment is required

PacBi

PacBio sequencing Run QC interpretation

Field Application Scientist | 應用科學家 Steiner Chen | 陳冠安

Primary analysis table overview



Primary analysis metrics summary table: Data yield

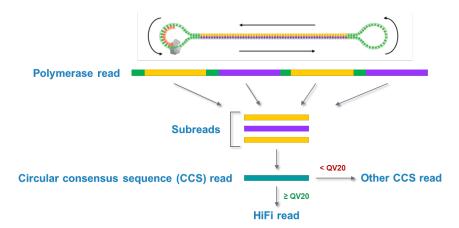
	Sample Information >	Run Settings >			Produ	ctivity (9	6)	Reads >				Control >
								HiFi Reads				
Well	Name	Movie Time (hrs)	Status	Total Bases (Gb)	P0	P1	P2	Yield	≥Q20 Reads	Mean Length	Median QV	Poly RL Mean (bp)
A01	HiFi WGS Sample 01	30	Complete	478.85	28.6	69.3	2.1	26.79 Gb	2160870	12396	Q35	82411
B01	HiFi WGS Sample 02	30	Complete	529.90	23.3	74.5	2.1	31.66 Gb	2322093	13633	Q35	85866
									MI CAR	•		and the second sec

Primary analysis metrics summary table: Productivity

	Sample Information >	Run Settings >			Produ	ctivity (%)	Reads >	Reads > C		Control >		Template <		
								HiFi Reads							
Well	Name	Movie Time (hrs)	Status	Total Bases (Gb)	РО	P1	Proc	ductivity (%	6)	Mean Length	Median QV	Poly RL Mean (bp)	Local Base Rate	Adapter Dimer	Short Insert
A01	Rhino_Verif_HG002_W	30	Complete	478.85	28.6	69.3		,	-,	12396	Q35	82411	2.70	0	0
B01	Rhino_Verif_HG002_W	30	Complete	529.90	23.3	74.5				13633	Q35	85866	2.74	0	0
C01	Rhino_Verif_HG002_W	30	Complete	470.11	31.1	67.0				14568	Q34	86987	2.68	0	0
D01	Rhino_Verif_HG002_W	30	Complete	532.14	19.7	78.0	PO	P1	P2	13979	Q33	86433	2.70	0	0
							28.6	69.3	2.1						
							23.3	74.5	2.1						
							31.1	67.0	1.9						
							19.7	78.0	2.3						

Productivity

- **P0:** Empty ZMW; no signal detected.
- **P1**: ZMW with a high quality (HQ) read generated.
- P2: Other signal detected but no HQ read generated


Recommended target *P1* is ~50% to 85% for optimal HiFi data yield per SMRT Cell. *If P0 values are <10% then the SMRT Cell is overloaded.*

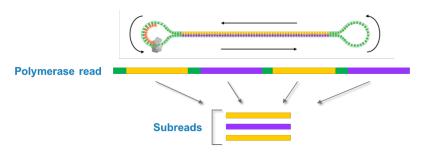
Primary analysis metrics summary table: HiFi read metrics

	Sample Information >	Run Settings >	I		Pr	roductivity (%)	Reads >		Expanding Polymerase			
						_	HiFi Reads		,	metrics		, j
Well	Name	Movie Time (hrs)	Status	Total	Reads →				/ Poly RL Mean (bp)	Local Base Rate	Adapter Dimer	Short Insert
A01	Rhino_Verif_HG002_W	30	Complete	478.8					82411	2.70	0	0
B01	Rhino_Verif_HG002_W	30	Complete	529.9	HiFi Read	ds			85866	2.74	0	0
C01	Rhino_Verif_HG002_W	30	Complete	470.1					86987	2.68	0	0
D01	Rhino_Verif_HG002_W	30	Complete	532.1	Yield	≥Q20 Re	ads Mean Lengt	h Median Q	86433	2.70	0	0
					26.79 Gb	2160870	12396	Q35				
					31.66 Gb	2322093	13633	Q35				
					30.27 Gb	2077599	14568	Q34				
					30.74 Gb	2198933	13979	Q33				

HiFi Read Metrics

- **HiFi Reads ≥Q20 Reads:** The total number of CCS Reads whose quality value is equal to or greater than 20.
- **HiFi Reads Yield:** The total yield (in base pairs) of the CCS Reads whose quality value is equal to or greater than 20.
- **HiFi Reads Mean Length:** The mean read length of the CCS Reads whose quality value is equal to or greater than 20.
- **HiFi Reads Mean QV:** The mean quality value of CCS Reads whose QV is equal to or greater than 20.

Primary analysis metrics summary table: Polymerase read & subread metrics

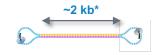

	Sample Information >	Run Settings >	I I	Productivity (%)	Reads >		(Control >	1	Template <	
					HiFi Reads						
Well	Name	Reads <								te Adapter Dimer	Short Insert
A01	Rhino_Verif_HG002_W									0	0
B01	Rhino_Verif_HG002_W	HiFi Reads				Polymeras	se Read Length	Longest	Subread	0	0
C01	Rhino_Verif_HG002_W						Laura	1	Luna	0	0
D01	Rhino_Verif_HG002_W	Yield	≥Q20 Reads	Mean Length	Median QV	Mean	N50	Mean	N50	0	0
		26.79 Gb	2160870	12396	Q35	86238	198750	14795	18250		
		31.66 Gb	2322093	13633	Q35	88798	200750	15788	19250		
		30.27 Gb	2077599	14568	Q34	87616	200750	15741	18750		
		30.74 Gb	2198933	13979	Q33	85218	192250	16963	20250		

Polymerase read length metrics

- **Polymerase Mean:** The mean high-quality read length of all polymerase reads. The value includes bases from adapters as well as multiple passes around a circular template.
- **Polymerase N50:** 50% of all read bases came from polymerase reads longer than this value.

Subread length metrics

- Longest Subread Mean: The mean subread length, considering only the longest subread from each ZMW.
- Longest Subread N50: 50% of all read bases came from subreads longer than this value when considering only the longest subread from each ZMW.



Primary analysis metrics summary table: Control read metrics

	Sample Information >	Run Settings >	L	I	Productivity (%)	Reads >	Reads >		Control >	l.	Template <	
						HiFi Reads	HiFi Reads					
Well	Name	Movie Time (hrs)	Status	Total E	Control <			١٧	Poly RL Mean (bp)	Local Base Rate	Adapter Dimer	Short Insert
A01	Rhino_Verif_HG002_W	30	Complete						82411	2.70	0	0
B01	Rhino_Verif_HG002_W	30	Complete	529.90			Concore	dance	85866	2.74	0	0
C01	Rhino_Verif_HG002_W	30	Complete						86987	2.68	0	0
D01	Rhino_Verif_HG002_W	30	Complete	532.14	Poly RL Mean (bp)	Total Reads	Mean	Mode	86433	2.70	0	0
					82411	4073	0.89	0.91				
					85866	4316	0.89	0.91				
					86987	4081	0.90	0.93				
					86433	4378	0.88	0.91				

Control read metrics

- Total Reads: The number of control reads obtained.
- Poly RL Mean: The mean polymerase read length of the control reads.
- **Concordance Mean:** The average concordance (agreement) between the control raw reads and the control reference sequence.
- **Concordance Mode:** The modal concordance (agreement) between the control raw reads and the control reference sequence.

* Not to scale

Sequel II DNA internal control 3.1 is aligned to the known 2 kb control reference sequence.

 Control 3.1 polymerase read length is typically ≥15 kb for a 15-hr movie time and ≥30 kb for a 30-hr movie time

Sequel II DNA internal control 3.2 is aligned to the known 11 kb control reference sequence.

• Control 3.2 polymerase read length is typically ≥40 kb for a 15-hr movie time and ≥80 kb for a 30-hr movie time

Control reads: Example expected performance for DNA internal control

	Sample Information >	Run Settings >		Control <			
						Concord	dance
	Name	Movie Time (hrs)	Status	Poly RL Mean (bp)	Total Reads	Mean	Mode
DNA Control 3.1		10	Complete	28,992	5,289	0.86	0.89
DNA Control 3.1	3.5 kb lso-Seq cDNA [No Size Selection]	24	Complete	57,242	6,546	0.87	0.89
DNA Control 3.1	8 kb Microbial WGS [No Size Selection]	15	Complete	35,294	1,978	0.86	0.91
DNA Control 3.2	5 kb Probe-based Capture [No Size Selection]	24	Complete	93,942	14,612	0.90	0.91
DNA Control 3.2	16 kb Human WGS [AMPure PB SS]	30	Complete	91,526	1,926	0.89	0.91

		Expected performance range								
		uel II al control 3.1	trol 3.1 DNA internal control							
Metric	15 hr movie	30 hr movie	15 hr movie	30 hr movie						
Control read count	≥500	≥500	≥1000	≥1000						
Control polymerase read length (Mean)	≥15 kb	≥30 kb	≥40 kb	≥80 kb						
Control concordance (Mean)	≥0.85	≥0.85	≥0.87	≥0.87						

Note: DNA internal control 3.2 is in part derived from sequences with high homology to lambda phage

- As a result, in sequencing runs with microbial genomes containing integrated phage sequence, a small fraction of reads may be misidentified as internal control reads.
- Such reads will display low concordance to the control sequence.

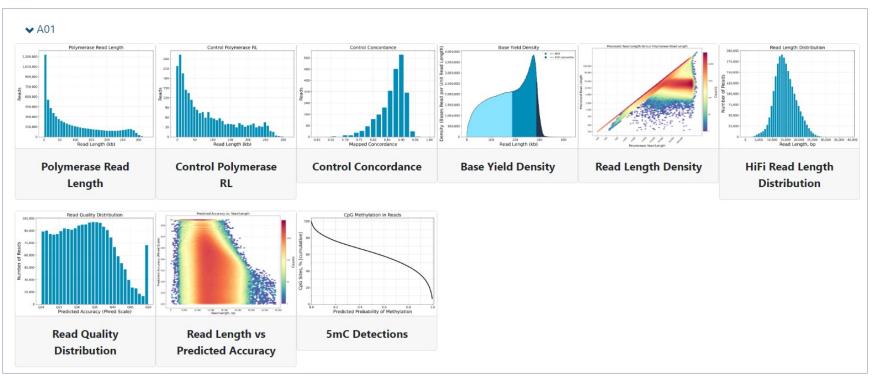
Primary analysis metrics summary table: Local base rate & other metrics

	Sample Information >	Information > Run Settings >		Productivity (%)		Reads >			Control >		Template <	
						HiFi Reads						
Well	Name	Movie Time (hrs)	Status	Total Base		Template <		n QV	Poly RL Mean (bp)	Local Base Rate	Adapter Dimer	Short Insert
A01	Rhino_Verif_HG002_W	30	Complete	478.85					82411	2.70	0	0
B01	Rhino_Verif_HG002_W	30	Complete	529.90					85866	2.74	0	0
C01	Rhino_Verif_HG002_W	30	Complete	470.11					86987	2.68	0	0
D01	Rhino_Verif_HG002_W	30	Complete	532.14	Local Base Rate	Adapter Dimer	Short Insert		86433	2.70	0	0
					2.70	0	0					
					2.74	0	0					
					2.68	0	0					
					2.70	0	0					

Local base rate

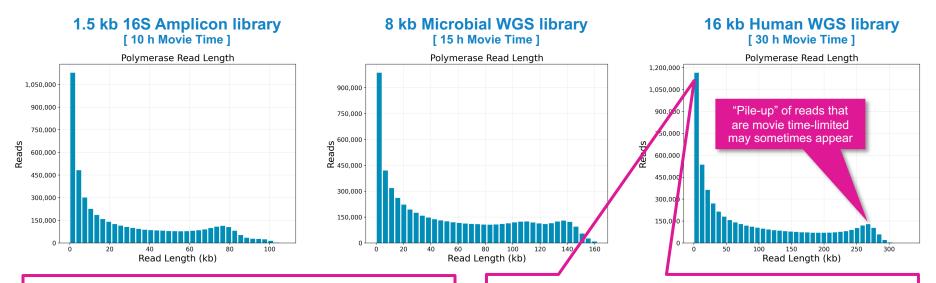
- The average base incorporation rate, excluding polymerase pausing events.
 - For Sequel II Binding kit 3.1, local base rate is typically ~1.7 2.2 bases per second
 - For Sequel II Binding kit 3.2, local base rate is typically ~2.2 3.0 bases per second

Template


- Adapter Dimer: The % of pre-filter ZMWs which have observed inserts of 0-10 bp. These are likely adapter dimers.
 - Purified SMRTbell libraries should typically show <2% adapter dimer levels
- Short Insert: The % of pre-filter ZMWs which have observed inserts of 11-100 bp. These are likely short fragment contamination.
 - Purified SMRTbell libraries should typically show <2% short insert levels

Run QC report plots

Run QC report plots: Overview

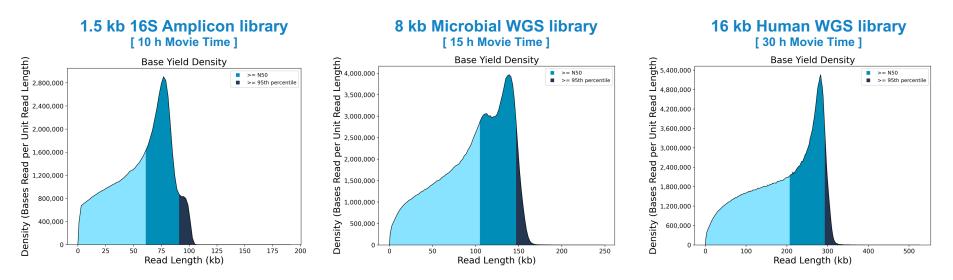

Plots

- Click the > arrow to expand rows to view Run QC Report plots for each SMRT Cell
- Clicking on an individual plot displays an expanded view.

Run QC report plots: Polymerase read length

Example polymerase read length plots for different sample library types

Polymerase read length

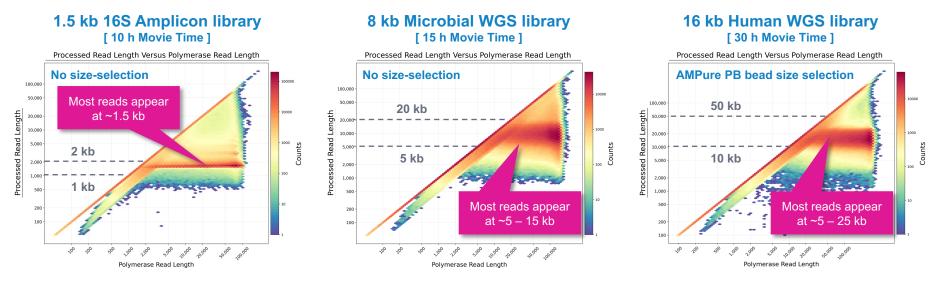

- Plots the number of reads against the polymerase read length
- Read count typically decreases as the polymerase length increases

Early-terminating reads typically appear as a major left-hand peak and can be caused by:

- Adapter hairpin oligo quality issues or incomplete adapter ligation
- Presence of nicks or other DNA damage
- · Disassociation of the polymerase from the template
- · Laser-induced photodamage that stops polymerase activity

Run QC report plots: Base yield density

Example base yield density plots for different sample library types



Base yield density: Displays the number of bases sequenced in the collection according to the length of the read in which they were observed.

- Values displayed are per unit of read length (i.e., the base yield density) and are averaged over 2000 bp windows to gently smooth the data.
- Regions of the graph corresponding to bases found in reads longer than the N50 and N95 values are shaded in medium and dark blue, respectively

Run QC report plots: Read length density

Example read length density plots for different sample library types

Read length density: Displays a (log scale) density plot of reads, binned according to their estimated insert read length* and polymerase read length

- This plot is useful for quickly visualizing aspects of library quality (e.g., insert size distributions and reads terminating at adapters)
- Reads that are concordant with the expected physical library insert size should ideally appear as strong horizontal features with a high density of counts (i.e., appear as a "dark red" color)

Run QC report plots: HiFi data-specific plots

120.

105.0

90,000

75,000

60,000

45.000

30,000

15,000

The following HiFi data-specific plots below are generated for any run where CCS processing is performed on-instrument (Sequel IIe system) or in SMRT Link (Sequel II systems)

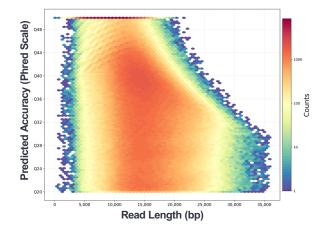
With AMPure PB bead size selection, a

large peak at ≥Q50 reads may appear due to residual short insert fragments

Read Quality Distribution

140,000 120,000 Mode approx. corresponds to Number of Reads Number of Reads 100,000 the physical library insert size 80,000 60,000 40.000 20.000 5.000 10.000 15,000 20,000 25,000 30.000 35,000 Read Length (bp)

Displays a histogram distribution of HiFi Reads (QV ≥20)


Displays a histogram distribution of HiFi Reads (QV ≥20)

035

Predicted Accuracy (Phred Scale)

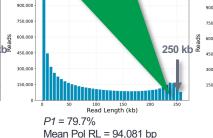
050

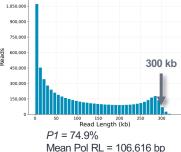
Predicted Accuracy vs. Read Length

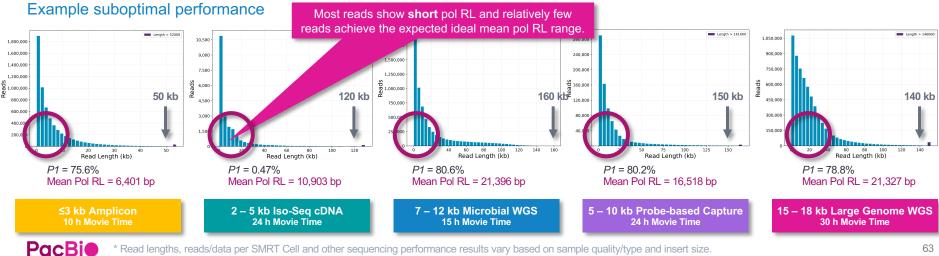
Displays a heat map of HiFi read lengths and predicted accuracies.

Read Length Distribution

Run QC plots interpretation & example case studies

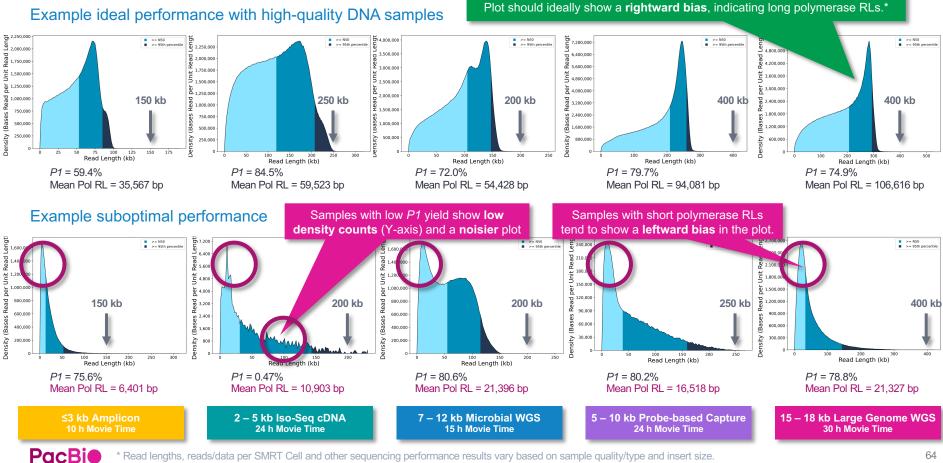

Polymerase read length plots: Example ideal vs. suboptimal performance


Example ideal performance with high-quality DNA samples


1,200,000 900.000 900,000 1,050,000 900,000 750.000 750,000 750.000 -<u>دہ</u> 600,000 600.000 600.000 100 kb 250 kb 2 450,000 ₩ 450.000 450,000 300,000 300,000 300,000 -150.000 -150.000 150,000 -150 200 250 Read Length (kb) Read Length (kb) P1 = 59.4%P1 = 84.5%Mean Pol RL = 35,567 bp Mean Pol RL = 59,523 bp

the expected ideal mean pol RL range.* 1.050.000 900,000 750.000 ls Is 600,000 160 kb^y

Plot should ideally show many reads exceeding


Read Length (kb)

Mean Pol RL = 54,428 bp

P1 = 72.0%

Read lengths, reads/data per SMRT Cell and other sequencing performance results vary based on sample quality/type and insert size.

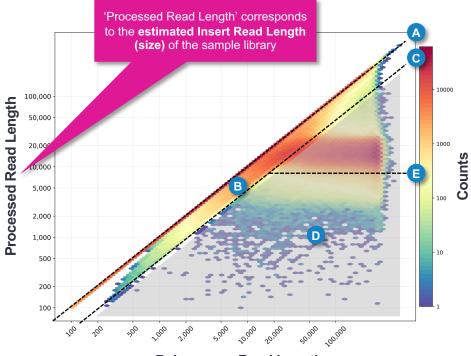
Base yield density: Example ideal vs. suboptimal performance

Read lengths, reads/data per SMRT Cell and other sequencing performance results vary based on sample quality/type and insert size.

Read length density plot interpretation

Displays a (log scale) density plot of reads, binned according to their estimated Insert Read Length* and Polymerase Read Length

This plot is useful for **quickly visualizing aspects of library quality**, including insert size distributions, reads terminating at adapters, relative abundance of CCS reads, etc.

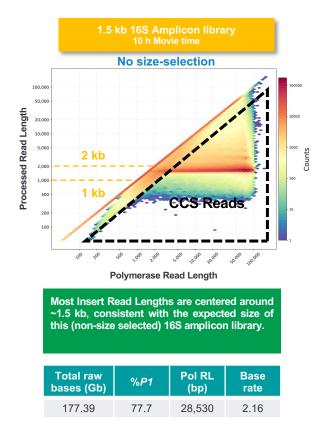

> (Primary diagonal line) Reads terminating in the first observed pass along the SMRTbell template

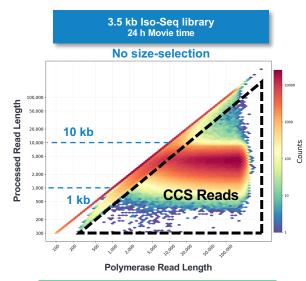
(Area between line A and line C) Reads terminating in the second observed pass along the SMRTbell template

(Secondary diagonal line) Reads terminating at the second SMRTbell adapter

(Graved area below line C) CCS (HiFi) reads

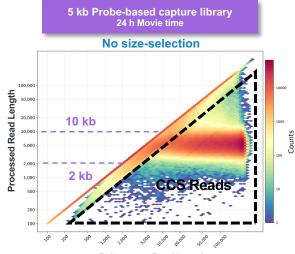
(Horizontal line) Size selection cutoff boundary




Polymerase Read Length

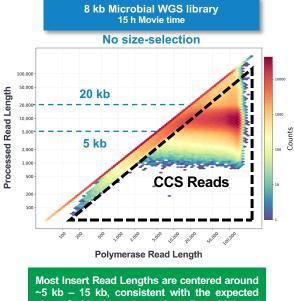
В

* Note: Estimated Insert Read Length (IRL) is labeled as 'Processed Read Length' on the Y-axis in Read Length Density plots. Estimated insert read length values are based on the Median Subread Length value for each ZMW.


Read length density plot: Example ideal performance

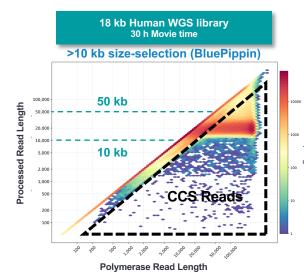
Most Insert Read Lengths are centered around \sim 1 kb – 10 kb, consistent with the expected size of this (non-size selected) Iso-Seq method cDNA library.

Total raw	%P1	Pol RL	Base
bases (Gb)		(bp)	rate
402.67	84.1	59,523	2.35

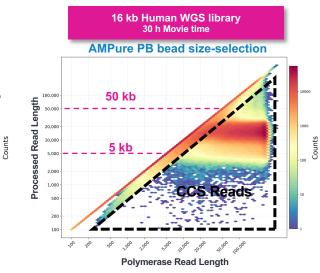


Polymerase Read Length

Most Insert Read Lengths are centered around \sim 3 kb - 10 kb, consistent with the expected size of this AMPure PB bead-size selected, HiFi target enrichment human gDNA library.


Total raw	%P1	Pol RL	Base
bases (Gb)		(bp)	rate
552.72	63.1	109,311	3.00

Read length density plot: Example ideal performance (cont.)

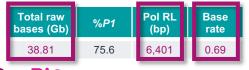

~5 kb – 15 kb, consistent with the expected size of this (non-size selected) multiplexed microbial gDNA library.

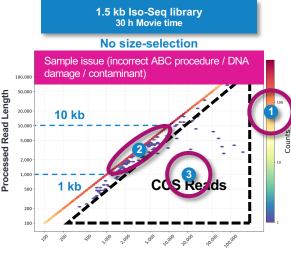
Total raw	%P1	Pol RL	Base
bases (Gb)		(bp)	rate
313.97	72.0	54,428	2.5

Most Insert Read Lengths are centered around ~10 kb – 25 kb, consistent with the expected size of this >10 kb BluePippin size-selected human gDNA library.

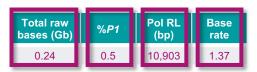

Total raw	%P1	Pol RL	Base
bases (Gb)		(bp)	rate
418.85	70.5	74,108	2.70

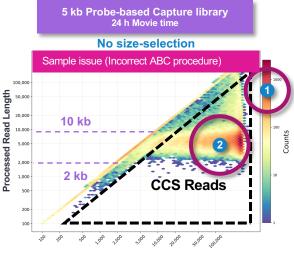
Most Insert Read Lengths are centered around \sim 5 kb – 25 kb, consistent with the expected size of this AMPure PB bead size-selected human gDNA library.


Total raw	%P1	Pol RL	Base
bases (Gb)		(bp)	rate
655.94	76.3	107,306	2.88


Read length density plot: Example suboptimal performance

Polymerase Read Length


- A high density of reads (red) appears on the primary diagonal line (1), indicating a large proportion of reads terminating in the first pass along the SMRTbell template – thus leading to short pol RL and lower than ideal CCS read density at the target insert size (2).
- Sample also shows a low base rate for Polymerase 2.1 and low total raw bases.

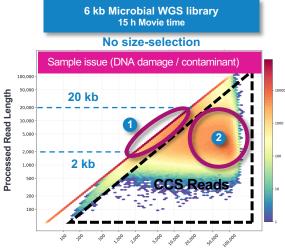


Polymerase Read Length

- Sample shows a very low overall density of P1 counts (1), short pol RL (due to a high relative number of reads terminating in the first pass (2)), and almost no CCS reads generated (3).
- Sample also shows a low base rate for Polymerase 2.1 and low total raw bases.

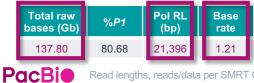
Polymerase Read Length

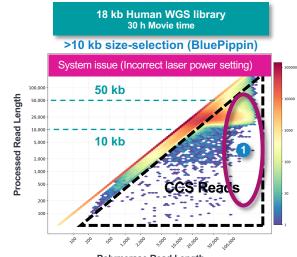
- Sample shows a very low overall density of P1 counts (1) thus leading toa lower than ideal CCS read density at the target insert size (2).
- Sample also shows low total raw bases due to the low overall P1 count


Total raw bases (Gb)	I	%P1	Pol RL (bp)	Base rate
16.19		1.5	147,837	2.96

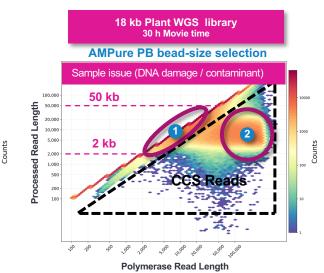
PacBi

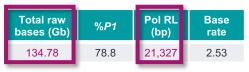
Read lengths, reads/data per SMRT Cell and other sequencing performance results vary based on sample quality/type and insert size.


Read length density plot: Example suboptimal performance (cont.)


Counts

Polymerase Read Length


- Sample shows a short mean pol RL (due to a high relative number of reads terminating in the first pass (1)) and lower than ideal CCS read density at the target insert size (2) with a substantial presence of insert read lengths <2 kb, suggesting a low-quality gDNA sample.
- Sample also shows a low base rate for Polymerase 2.2 and a low total raw base yield.


Polymerase Read Length

- Density of CCS reads noticeably decreases as pol RL increases (1) due to a short mean pol RL value.
- Sample also shows a low total raw base yield.

- A high proportion of reads are terminating in the first pass (1), thus leading to a shorter than ideal mean pol RL and lower than ideal CCS read density at the target insert size (2).
- Sample also shows a lower than ideal base rate for Polymerase 2.2 and a low total raw base yield.

Total raw	%P1	Pol RL	Base
bases (Gb)		(bp)	rate
215.48	63.8	42,093	2.08

Run QC report interpretation & example case studies

The data yields achievable through SMRT sequencing and the diverse number of applications available highlight how important the quality control of a sequencing run is before starting any bioinformatic analysis.

- This section describes how to use PacBio's SMRT Link Run QC and Data Management reports to evaluate primary analysis metrics and overall sequencing performance trends for your sample library
- For more detailed sequencing performance troubleshooting guidance, refer to troubleshooting resources available on PacBio's <u>Documentation</u> website.

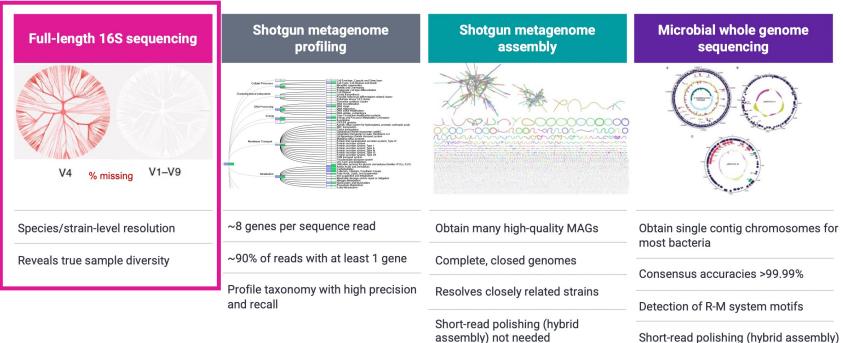
	By-Step Run P	erformance	Evalua	tion				
Introduction								
sequencing runs usin It is intended to help	nformation on how to to g the Internal Control customers understand wnstream secondary a	and primary metric and interpret the n	s immediat netrics mos	ely availab	le upon run completion.			
Step 1: Evaluat	e the Performan	ce of the DNA	Internal	Contro	L			
	I DNA Internal Con							
control on Sequel [®] S annealed primer and SMRT [®] Link Sample performance of Sequ	ystems. It is compose	d of a fixed insert of This control complet to be a known idea nexpected performa	f 1966 bps ex is spiked al sample fo ance of this	with ligate I into the b x monitori				
detected and separat occurs on the instrum control reads may pa	ent and all detected o	see Additional Info control reads are se the subreads barn	rmation for nt to the so file, but this	sequence raps.bam). Control read filtering			
How to Prepare th	e DNA Internal Cor	trol Complex for	he DNA Internal Control Complex for Sequencing					
it directly to the samp		opriately follow the	tion and re directions f	quires a se or prepari	arial dilution prior to addir ng the control complex as klist.			
it directly to the samp indicated in SMRT Li The Control Complex 20°C to maintain stat finger tapping and sy Typical Control Comp section (Table 1 for S How to use the DN When a sequencing J	It is critical to apprink Sample Setup or the should be kept on ice should be kept on ice shining down before us plex read counts are s MRT Cell 1M and Tal IA Internal Control performance issue is control	opriately follow the te application-speci e when handling and and all subsequent is. Do not reuse pre hown in the "Seque lo 2 for SMRT Cell Sequencing Per observed for a samp	tion and re directions f fic Procedu d, after use dilutions, m eparations I Systems I Systems I SM). formance ole, users s	quires a se or preparin re & Chec , promptly ust be full of the cont Control Co Metrics hould first	ig the control complex as klist. returned to storage at - y homogenized by gentle rol from previous runs. incordance Too Low?* for Troubleshooting evaluate the primary IRT Link contains primary			
it directly to the samp indicated in SMRT L1 The Control Comple 20°C to maintain stat finger tapping and sp Typical Control Comp section (Table 1 for 5 How to use the DP When a sequencing sequencing metrics of	le. It is critical to appr nk Sample Sotup or th should be kept on ico illity. The stock tube, a inning down before us plex read counts are s viRtT Cell 1M and Tal IA Internal Control performance issue is of the DNA Internal Co	opriately follow the te application-speci e when handling and and all subsequent is. Do not reuse pre hown in the "Seque lo 2 for SMRT Cell Sequencing Per observed for a samp	tion and re directions f fic Procedu d, after use dilutions, m eparations I Systems I Systems I SM). formance ole, users s	quires a se or preparin re & Chec , promptly ust be full of the cont Control Co Metrics hould first	ing the control complex as kilst. returned to storage at - y homogenized by gentle rol from previous runs. incordance Too Low?" for Troubleshooting evaluate the primary			
it directly to the samp indicated in SMRT L1 The Control Complete 20°C to maintain stat finger tapping and sp Typical Control Comp section (Table 1 for 5 How to use the D1 When a sequencing sequencing metrics of Click on the small arrow (<) next to	It is critical to apprink Sample Setup or the should be kept on ice should be kept on ice shining down before us plex read counts are s MRT Cell 1M and Tal IA Internal Control performance issue is control	opriately follow the te application-speci e when handling and and all subsequent is. Do not reuse pre hown in the "Seque lo 2 for SMRT Cell Sequencing Per observed for a samp	tion and re directions f fic Procedu d, after use dilutions, m eparations I Systems I Systems I SM). formance ole, users s	quires a si or preparii re & Cheo , promptly ust be full of the cont Control Co Metrics hould first re 1) in SM	ig the control complex as klist. returned to storage at - y homogenized by gentle rol from previous runs. incordance Too Low?* for Troubleshooting evaluate the primary IRT Link contains primary			
it directly to the samp indicated in SMRT LI The Control Complex 20°C to maintain stat finger tapping and sp Typical Control Com section (Table 1 for S How to use the D When a sequencing metrics of Click on the small	Ne. It is critical to appr nk Sample Setup or th should be kept on ico itility. The stock tube, a inning down before us before accounts are s MRT Cell 1M and Tal berformance issue is o the DNA Internal Control berformance issue is o the DNA Internal Co	opriately follow the e application-speci e when handling am and all subsequent is. Do not reuse pro- hown in the "Seque le 2 for SMRT Cell Sequencing Per observed for a samp ntrol. The Run QC 1	tion and re directions f fic Procedu d, after use dilutions, m aparations (1 Systems - 1	quires a si or prepariti re & Check promptly sust be full of the control Co Metrics hould first re 1) in SM	ig the control complex as klist. returned to storage at - y homogenized by gentle rol from previous runs. incordance Too Low?* for Troubleshooting evaluate the primary IRT Link contains primary			
it directly to the samp indicated in SMRT LI The Control Complex 20°C to maintain stat finger tapping and sp Typical Control Com section (Table 1 for S How to use the DD When a sequencing sequencing metrics of Click on the small arrow (<) next to "Control" to see full	le. It is critical to appr nk Sample Sotup or th should be kept on ico illity. The stock tube, a inning down before us plex read counts are s viRtT Cell 1M and Tal IA Internal Control performance issue is of the DNA Internal Co	opriately follow the e application-speci e when handling am and all subsequent is. Do not reuse pro- hown in the "Seque le 2 for SMRT Cell Sequencing Per observed for a samp ntrol. The Run QC 1	tion and re directions f fic Procedu d, after use dilutions, m eparations il Systems (8M). formance ble, users s table (Figur	quires a si or preparii re & Cheo , promptly ust be full of the cont Control Co Metrics hould first re 1) in SM	ig the control complex as klist. returned to storage at - y homogenized by gentle rol from previous runs. incordance Too Low?* for Troubleshooting evaluate the primary IRT Link contains primary			
it directly to the samp indicated in SMRT LI The Control Complex 20°C to maintain stat finger tapping and sp Typical Control Com section (Table 1 for S How to use the DD When a sequencing sequencing metrics of Click on the small arrow (<) next to "Control" to see full	le It is critical to appr nk Sample Setup or It should be kopt on ici ality. The stock tube, i mining down before us lake read-counts are is MRT Cell II M and Tal IA Internal Control IA Internal Control Control, < Poly RL Meer (opriately follow the se application-speci- es when handling an and all subsequent all subsequent subsequent on reuse pro- hown in the "Seque ale 2 for SMRT Cell Sequencing Per- ber Sequencing Per- section Sequencing Per- ber Sequencing Per- section Sequencing Per- ber Sequencing Per- section Sequencing Per- ber Sequencing Per- Sequencing Per- Sequencing Per- Sequencing Per- section Sequencing Per- section Sequencing Per- section Sequencing Per- section Sequencing Per- Sequencing Per Sequencing Per- Sequen	tion and re directions f fic Procedu d, after use dilutions, m apparations d l Systems 1 8M). formance ole, users s table (Figure Concore Mean	quires a si or prepariti re & Chec , promptly uust be full of the cont Control Cc Metrics hould first re 1) in SW Jance Mode	ig the control complex as klist. returned to storage at - y homogenized by gentle rol from previous runs. incordance Too Low?* for Troubleshooting evaluate the primary IRT Link contains primary			

Step-By-Step Run Performance Evaluation Guide (<u>101-993-600</u>) provides information on how to troubleshoot sub-optimal sequencing performance using the DNA Internal control and primary metrics available through SMRT Link Run QC.

SMRT sequencing troubleshooting

Troubleshooting guidance summary table for samples showing poor sequencing performance

Symptom	Potential causes	Possible actions / solutions
Sample shows short polymerase read length (DNA internal control sequencing performance is	Excessively high sample OPLC	Reduce sample OPLC
normal)	Sample quality issue (e.g., highly fragmented DNA, high amount of DNA damage, presence of a contaminant)	Confirm sample QC; re-purify sample (consider changing methodology)
	Incorrect or insufficient pre-extension time specified in Run Design	Use SMRT Link recommended or longer pre-extension time setting
	Inefficient adapter ligation reaction	Verify adapter ligation conditions used during SMRTbell library construction; reperform ligation reaction step if needed
Sample shows low <i>P1</i> productivity metric (DNA internal control sequencing performance is	Manual pipetting error during primer annealing, polymerase binding or complex cleanup (ABC) steps	Redo sample ABC steps
normal)	Sample quality issue (e.g., highly fragmented DNA, high amount of DNA damage, presence of a contaminant)	Confirm sample QC (DNA molecular weight, purity and concentration); re-purify sample (consider changing methodology)
Sample shows high <i>P2</i> productivity metric (DNA internal control sequencing performance is	Excessively high sample OPLC	Reduce OPLC
normal)	Sample quality issue (e.g., contaminant)	Confirm sample QC (DNA purity); re-purify sample (consider changing methodology)
	Excessively high unbound polymerase carryover	Redo polymerase binding step
	Use of non-recommended plastic consumables (leaching of fluorescent contaminants)	Use recommended plastic consumables for all sample extraction/purification, library construction and sequencing preparation steps
Insert read length density plot shows larger than expected library insert size (DNA internal control	Concatemers present due to inefficient adapter ligation reaction	Verify adapter ligation conditions used during SMRTbell library construction; redo ligation reaction step if needed
sequencing performance is normal)	Sample quality issue (e.g., incorrect library insert size)	Confirm sample QC and molarity (DNA molecular weight); redo sample size selection step

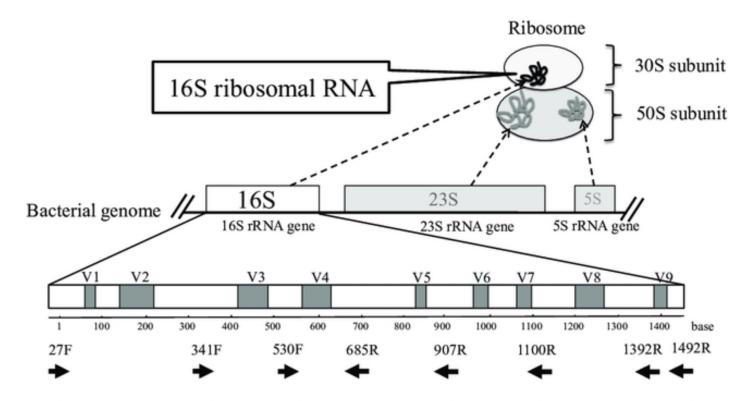

PacBi

PacBio HiFi Sequencing for High-Resolution Microbiome Research

4 July 2023 彭彦菱 Lynn Peng | Bioinformatics Engineer, Blossombio Taiwan

PacBio 生物資訊教育訓練 進階班 Advanced Workshop A

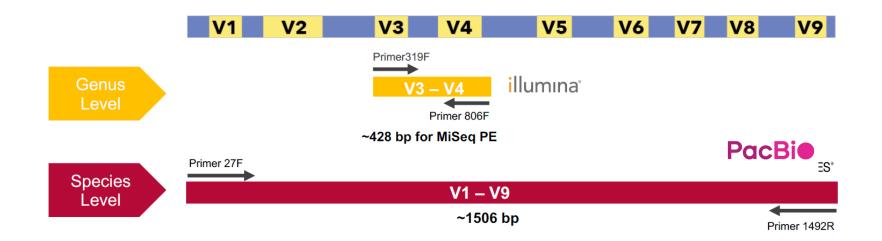
HiFi sequencing delivers the most comprehensive and highest quality data for microbial genomics



Short-read polishing (hybrid assembly) not needed

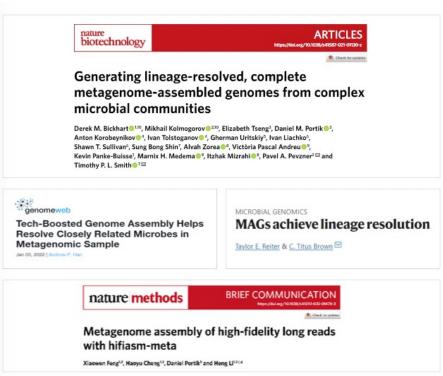
PacBi

Full-Length 16S Pipeline Overview


16s rRNA sequencing is a culture-free method to identify and compare bacterial diversity from complex microbiomes or environments

PacBi

Fukuda K, Ogawa M, Taniguchi H, Saito M. Molecular Approaches to Studying Microbial Communities: Targeting the 16S Ribosomal RNA Gene. J UOEH. 2016 Sep;38(3):223-32. doi: 10.7888/juoeh.38.223. PMID: 27627970.


Amplicons can Target 16s rRNA and Beyond

Longer amplicons enable higher resolution taxonomic identification

PacBio HiFi sequencing is setting a new gold standard in 16S/metagenomics

HiFi Metagenomic Sequencing Enables Assembly of Accurate and Complete Genomes from Human Gut Microbiota

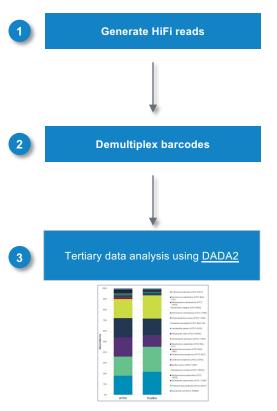
O Chan Yeong Kim, O Junyeong Ma, O Insuk Lee

Evaluation of taxonomic profiling methods for long-read shotgun metagenomic sequencing datasets

💿 Daniel M. Portik, 💿 C. Titus Brown, 💿 N. Tessa Pierce-Ward

Hybrid, ultra-deep metagenomic sequencing enables genomic and functional characterization of lowabundance species in the human gut microbiome

Hao Jin ¹, Lijun You ¹, Feiyan Zhao ¹, Shenghui Li ¹, Teng Ma ¹, Lai-Yu Kwok ¹, Haiyan Xu ¹, Zhihong Sun ¹


Finding the right fit: evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data

Jeanette L. Gehrig¹, Daniel M. Portik¹, Mark D. Driscoll¹, Eric Jackson¹, Shreyasee Chakraborty², Dawn Gratalo³, Meredith Ashby² and Ricardo Valladares^{1,4}

https://www.nature.com/articles/s41587-021-01130-z; https://www.nature.com/articles/s41587-021-01130-z; https://www.nature.com/articles/s41564-021-01027-2; https://www.genomeweb.com/sequencing/techboosted-genome-assembly-helps-resolve-closely-related-microbes-metagenomic-sample; https://www.tandfonline.com/doi/full/10.1080/19490976.2021.2021790; https://www.biorxiv.org/content/10.1101/2022.01.31.478527v1?ct=; https://www.biorxiv.org/content/10.1101/2022.02.09.479829v1; https://www.nature.com/articles/s41592-022-01478-3; https://pubmed.ncbi.nlm.nih.gov/35302439/

16S Data Analysis Workflow Recommendations

1. Perform CCS analysis on-instrument (Sequel IIe system only) or in <u>SMRT Link</u> to generate highly accurate (≥Q20) single-molecule long reads (HiFi reads)

- 2. Demultiplex barcodes on-instrument (Sequel IIe system only) or in SMRT Link to separate HiFi reads by sample barcode
 - Barcode FASTA files for demultiplexing can be downloaded from PacBio's Multiplexing website

3. Analyze 16S data using <u>DADA2</u> or <u>Qiime2</u>

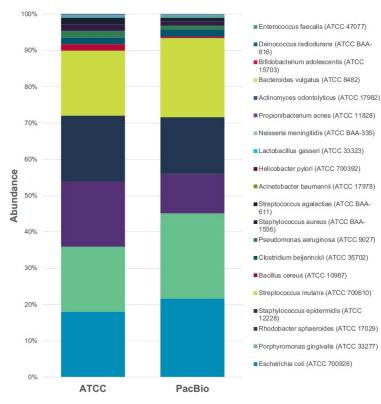
An example HiFi read data set for a MSA-1003 mock community sample is available for download from PacBio (Link)

Example workflow: 192-plex 16S amplicon library preparation using barcoded gene-specific primers

MSA-1003 Mock Community Sample Description

PacBi

- MSA-1003 is a controlled, pre-defined, standardized reference material that can help with metagenomic analysis protocol development optimization, verification, and quality control
- 20 Strain Staggered Mix Genomic Material (ATCC MSA-1003) <u>https://www.atcc.org/products/all/MSA-1003.aspx</u>
- MSA-1003 sample is a mock microbial community that mimics mixed metagenomic samples
- MSA-1003 sample comprises genomic DNA prepared from fully sequenced, characterized, and authenticated ATCC Genuine Cultures that were selected by ATCC based on relevant phenotypic and genotypic attributes, such as Gram stain, GC content, genome size, and spore formation
- For the example data shown in this presentation, replicate MSA-1003 samples were processed in parallel to generate a 192-plex pooled 16S SMRTbell library using barcoded gene-specific primers and SMRTbell express template prep kit 2.0


%	MSA-1003 component
0.18	Acinetobacter baumannii (ATCC 17978)
1.80	Bacillus cereus (ATCC <u>10987</u>)
0.02	Bacteroides vulgatus (ATCC 8482)
0.02	Bifidobacterium adolescentis (ATCC 15703)
1.80	Clostridium beijerinckii (ATCC <u>35702</u>)
0.18	Cutibacterium acnes (ATCC 11828)
0.02	Deinococcus radiodurans (ATCC BAA-816)
0.02	Enterococcus faecalis (ATCC 47077)
18.0	Escherichia coli (ATCC 700926)
0.18	Helicobacter pylori (ATCC 700392)
0.18	Lactobacillus gasseri (ATCC <u>33323</u>)
0.18	Neisseria meningitidis (ATCC <u>BAA-335</u>)
18.0	Porphyromonas gingivalis (ATCC 33277)
1.80	Pseudomonas aeruginosa (ATCC <u>9027</u>)
18.0	Rhodobacter sphaeroides (ATCC 17029)
0.02	Schaalia odontolytica (ATCC 17982)
1.80	Staphylococcus aureus (ATCC BAA-1556)
18.0	Staphylococcus epidermidis (ATCC 12228)
1.80	Streptococcus agalactiae (ATCC BAA-611)
18.0	Streptococcus mutans (ATCC 700610)
	https://www.atao.org/producto/all/MSA_1002.com

https://www.atcc.org/products/all/MSA-1003.aspx

9

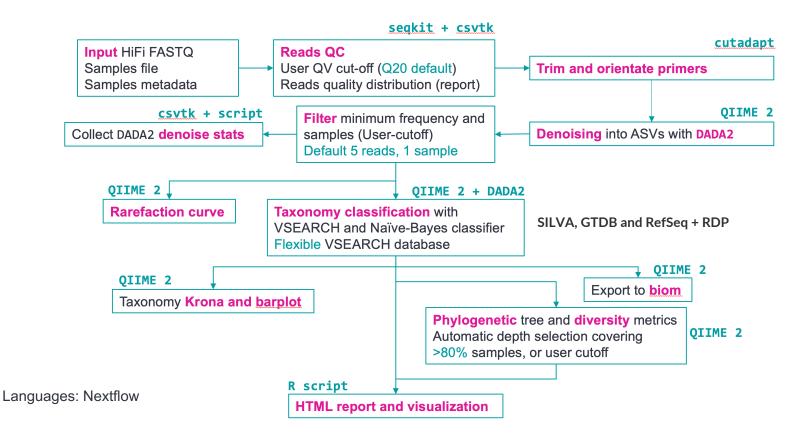
PacBio 16S Sequencing Faithfully Represents a Known Mock Community Sample

16S ANALYSIS OF THE MSA-1003 MOCK COMMUNITY

MSA-1003 SAMPLE DESCRIPTION

20 Strain Staggered Mix Genomic Material (ATCC® MSA-1003™) https://www.atcc.org/products/all/MSA-1003.aspx

Yield of >99% accurate 16S reads matches the expected composition of the MSA-1003 mock community sample


GC content ranging from 30 ~ 69% can be identified

Download and explore this 16S HiFi dataset further

Full-length (V1-V9) 16S amplicon samples were pooled at 96-Plex and sequenced on a single SMRT Cell 8M (Sequel II System Chemistry 2.0). PacBio results shown in bar graph reflect the average abundance values derived from the pooled MSA-1003 replicate samples.

pb-16S-nf overview

Step-by-step guideline

1. Clone repository:

git clone https://github.com/PacificBiosciences/pb-16S-nf.git

- Install Anaconda/Miniconda and Nextflow:
 conda install mamba -n base -c conda-forge
 conda install -c bioconda nextflow
- 3. Download Databases:

nextflow run main.nf -download_db

4. Run pipeline:

nextflow run main.nf -input sample.tsv \

- --metadata metadata.tsv \
- -profile conda \
- --outdir results

If using Docker, just add "-profile docker".

Modify "nextflow.config" to utilizes HPC job scheduler if desirable

Input & Metadata

A file giving a sample name for each of the FASTQ file that we are going to analyze.

```
# PB_sample.tsv
sample-id absolute-filepath
A-1 /home/smrtuser/16Sdata/BC2079_5p--BC2038_3p.hifi_reads.fastq.gz
Z-1 /home/smrtuser/16Sdata/BC2080_5p--BC2038_3p.hifi_reads.fastq.gz
A-4 /home/smrtuser/16Sdata/BC2079_5p--BC2076_3p.hifi_reads.fastq.gz
Z-4 /home/smrtuser/16Sdata/BC2080_5p--BC2076_3p.hifi_reads.fastq.gz
```

And a file giving the status/info/condition of the sample

\$nextflow run main.nf \

```
--input PB_sample.tsv --metadata PB_metadata.tsv -profile conda \
--dada2 cpu 80 --vsearch cpu 80 \
```

```
--outdir PB_16S_2023-03
```

Parameters tuning

Parameters can be changed when running the pipeline, e.g. to

change the default quality filter threshold to Q30:

nextflow run main.nf -input sample.tsv \

--filterQ 30

Pipeline will report progress:

executor > Loca		
[d3/9c2250] pro	cess > pb16S:QC_fastq (1)	[100%] 1 of 1 🖌
[f0/1e5563] prov	cess > pb16S:cutadapt (1)	[100%] 1 of 1 🖌
[72/77ef53] pro	cess > pb16S:collect_QC	[100%] 1 of 1 🖌
[a7/c58064] pro	cess > pb16S:prepare_qiime2_manifest	[100%] 1 of 1 🖌
[3e/25a7b2] pro	cess > pb16S:import_qiime2	[100%] 1 of 1 🖌
[97/26a1ac] pro	cess > pb16S:demux_summarize	[100%] 1 of 1 🖌
[b0/f04b17] pro	cess > pb16S:dada2_denoise	[100%] 1 of 1 🖌
[c7/8b9c2a] pro	cess > pb16S:filter_dada2	[100%] 1 of 1 🖌
[fd/7137cc] prod	cess > pb16S:dada2_qc (1)	[100%] 1 of 1 🖌
[bf/0fbda2] pro	cess > pb16S:qiime2_phylogeny_diversity (1	l) [100%] 1 of 1 🖌
[ab/3d0dcd] prod	cess > pb16S:dada2_rarefaction (1)	[100%] 1 of 1 🖌
[66/b3c993] pro	cess > pb16S:class_tax	[100%] 1 of 1 🖌
[78/d013e5] pro	cess > pb16S:dada2_assignTax	[100%] 1 of 1 🖌
[11/d9dfd9] prod	cess > pb16S:export_biom	[100%] 1 of 1 🖌
[9f/9dbe48] prod	cess > pb16S:barplot (1)	[100%] 1 of 1 🖌
[c6/46bb48] pro	cess > pb16S:html_rep (1)	[100%] 1 of 1 🖌
[ad/6eb20f] prod	cess > pb16S:krona_plot	[100%] 1 of 1 🖌
Completed at: 20	0-12月-2022 11:32:54	
Duration : 6	m 6s	
CPU hours : 1	.2	
Succeeded : 1	7	

nextflow run main.nf --help Usage: This pipeline takes in the standard sample manifest and metadata file used in QIIME 2 and produces QC summary, taxonomy classification results and visualization. For samples TSV, two columns named "sample-id" and "absolute-filepath" are required. For metadata TSV file, at least two columns named "sample_name" and "condition" to separate samples into different groups. nextflow run main.nf --input samples.tsv --metadata metadata.tsv \\ --dada2_cpu 8 --vsearch_cpu 8 By default, sequences are first trimmed with cutadapt. If adapters are already trimmed, you can sl cutadapt by specifying "--skip_primer_trim". Other important options: -- front_p Forward primer sequence. Default to F27. (default: AGRGTTYGATYMTGGCTCAG) --filterQ Filter input reads above this Q value (default: 20). --max ee DADA2 max EE parameter. Reads with number of expected errors higher than this value will be discarded (default: 2) --min0 DADA2 min0 parameter. Reads with any base lower than this score will be removed (default: 0) --min_len Minimum length of sequences to keep (default: 1000) --max len Maximum length of sequences to keep (default: 1600) --pooling_method QIIME 2 pooling method for DADA2 denoise see QIIME 2 documentation for more details (default: "pseudo", alternative: "independent") max-reject parameter for VSEARCH taxonomy classification method in QIIME 2 --maxreject (default: 100) --maxaccept max-accept parameter for VSEARCH taxonomy classification method in QIIME 2 (default: 100) --min asy totalfreg Total frequency of any ASV must be above this threshold across all samples to be retained. Set this to 0 to disable filtering (default 5) --min_asv_sample ASV must exist in at least min_asv_sample to be retained. Set this to 0 to disable. (default 1) --vsearch_identity Minimum identity to be considered as hit (default 0.97) --rarefaction_depth Rarefaction curve "max-depth" parameter. By default the pipeline automatically select a cut-off above the minimum of the denoised reads for >80% of the samples. This cut-off is stored in a file called "rarefaction_depth_suggested.txt" file in the results folder (default: null) --dada2 cpu Number of threads for DADA2 denoising (default: 8) --vsearch cpu Number of threads for VSEARCH taxonomy classification (default: 8) --cutadapt_cpu Number of threads for primer removal using cutadapt (default: 16) --outdir Output directory name (default: "results") --vsearch_db Location of VSEARCH database (e.g. silva-138-99-seqs.qza can be downloaded from QIIME database) --vsearch tax Location of VSEARCH database taxonomy (e.g. silva-138-99-tax.gza can be downloaded from OIIME database) --silva db Location of Silva 138 database for taxonomy classification --gtdb_db Location of GTDB r202 for taxonomy classification --refseg db Location of RefSeg+RDP database for taxonomy classification --skip_primer_trim Skip all primers trimming (switch off cutadapt and DADA2 primers removal) (default: trim with cutadapt) --skip_nb Skip Naive-Bayes classification (only uses VSEARCH) (default: false) --colorby Columns in metadata TSV file to use for coloring the MDS plot in HTML report (default: condition) --run_picrust2 Run PICRUSt2 pipeline. Note that pathway inference with 16S using PICRUSt2 has not been tested systematically (default: false) --download db Download databases needed for taxonomy classification only. Will not run the pipeline. Databases will be downloaded to a folder "databases"

in the Nextflow pipeline directory.

--version Output version

HTML report provides useful metrics and visualizations

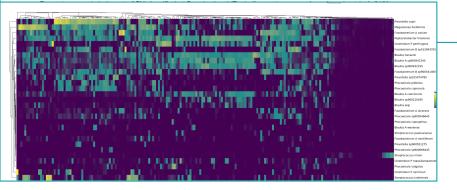
Important outputs are in QIIME-compatible format and TSV format for easy importing

Outputs documentation: <u>https://github.com/PacificBiosciences/pb-16S-</u> nf/blob/main/pipeline_overview.md

Show	10 ~ entries						Search:	
	sample-id	$\mathbf{input} \ \diamondsuit$	filtered ≑	percentage of $_{\ensuremath{\varphi}}$ input passed filter	denoised \$	non-chimeric 🛊	percentage of input non-chimeric	n_ASV
	All	II.	All	All	All	All	All	All
1	3VTVMP	151083	98855	65.43	96851	96678	63.99	465
2	46EVMD	58454	38564	65.97	37284	37230	63.69	618
3	4EHTJU	30231	19807	65.52	18775	18742	62	490
4	4F747A	50845	33715	66.31	32909	32909	64.72	454
5	4H9C6C	50973	34287	67.27	33034	33002	64.74	444
6	4JAMMH	62883	41938	66.69	40797	40797	64.88	337
7	4RHFPT	21373	14065	65.81	13788	13712	64.16	221
8	4RNFPC	13929	9390	67.41	8566	8566	61.5	113
9	4VMEN7	87957	57684	65.58	56576	56576	64.32	475
10	63NDYT	121547	80036	65.85	78644	78636	64.7	508

HiFi Full-length 16S Analysis Report

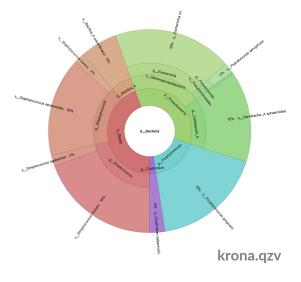
Summary QC statistics


- Samples number: 192
- Final samples number post-DADA2: 192
- Missing samples (Not enough reads, do not pass QC, etc):
- Total number of CCS reads before filtering and primers trimming: 16777633
- Was primers trimmed prior to DADA2? Yes
- Total number of reads after quality filtering: 16472863 (98.18%)
- Total number of reads after primers trimming (DADA2 input): 16438413 (99.79%)
- Total number of ASVs found: 17293
- Average number of ASVs per sample: 361
- Total number of reads in 17293 ASVs: 10623342 (64.63% of all input reads)

Classification using VSEARCH with a single database

- ASVs classified at Species level: 11646 (67.35%)
- ASVs classified at Species level (Excluding metagenome/uncultured entries): 11646 (67.35%)
- Percentage reads belong to ASV classified at Species level (Excluding metagenome/uncultured entries): 80%
- ASVs classified at Genus level: 11711 (67.72%)
- ASVs classified at Genus level (Excluding metagenome/uncultured entries): 11711 (67.72%)
- Percentage reads belong to ASV classified at Genus level (Excluding metagenome/uncultured entries): 81%

Classification using Naive Bayes classifier with SILVA, GTDB and RefSeq + RDP

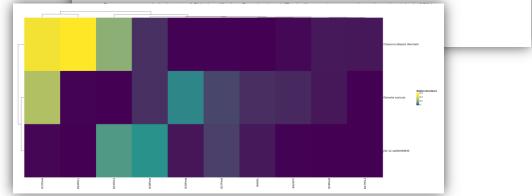

- ASVs classified at Species level: 13515 (78.15%)
- ASVs classified at Species level (Excluding metagenome/uncultured entries): 13515 (78.15%)

- HTML report provides useful metrics and visualizations
- Important outputs are in QIIME2-compatible format and TSV format for easy importing
- Outputs documentation:

https://github.com/PacificBiosciences/pb-16S-nf

HiFi Full-length 16S Analysis Report

Summary QC statistics


- · Samples number: 10
- Final samples number post-DADA2: 10
- Missing samples (Not enough reads, do not pass QC, etc):
- Total number of CCS reads before filtering and primers trimming: 1635360
- Was primers trimmed prior to DADA2? Yes
- Total number of reads after quality filtering: 1634186 (99.93%)
- Total number of reads after primers trimming (DADA2 input): 1608027 (98.4%)
- Total number of ASVs found: 2702
- Average number of ASVs per sample: 507
- Total number of reads in 2702 ASVs: 1381382 (85.91% of all input reads)

Classification using VSEARCH with a single database

- ASVs classified at Species level: 1079 (39.93%)
- ASVs classified at Species level (Excluding metagenome/uncultured entries): 1079 (39.93%)
- Percentage reads belong to ASV classified at Species level (Excluding metagenome/uncultured entries): 59%
- ASVs classified at Genus level: 1100 (40.71%)
- ASVs classified at Genus level (Excluding metagenome/uncultured entries): 1100 (40.71%)
- · Percentage reads belong to ASV classified at Genus level (Excluding metagenome/uncultured entries): 59%

$Classification \ using \ Naive \ Bayes \ classifier \ with \ SILVA, \ GTDB \ and \ RefSeq + \ RDP$

- ASVs classified at Species level: 1645 (60.88%)
- ASVs classified at Species level (Excluding metagenome/uncultured entries): 1645 (60.88%)

dime2view

This interface can view .qza and .qzv files directly in your browser without uploading to a server. Click here to learn more.

Drag and drop or click here

to view a QIIME 2 Artifact or Visualization (.qza/.qzv) from your computer.

You can also provide a link to a file on Dropbox or a file from the web.

How does it perform? (32 CPUs)

Sample types	Number of samples	Number of FL Q20 reads (FL%)	Total ASVs	Reads in ASVs	Classified species ASVs	Classified species reads	Pipeline run time	Pipeline max memory
Oral ¹	891	8.3m	5417	5104663 (62%)	87%	91%	2.5h	34 GB
Gut ²	192	2.2m	1593	996965 (45%)	96%	99%	2h	30 GB
Animal gut ³	192	16.7m	17293	10623342 (65%)	67%*	81%	13h	87 GB
Animal gut ³	192	2.2m (99.3%)	10917	1789875 (83%)	70%	79%	5.5h	30 GB
Wastewater full ⁴	33	2.14m	11462	1969683 (92%)	39%*	63%	12h	47 GB
Wastewater 10k/sample ⁵	33	326k	3974	265137 (82%)	44%*	65%	4.6h	23 GB

* Using MiDAS wastewater database increases classified species and reads to 85% for full dataset and 91% for down-sampled dataset

- Data downloaded from SRA PRJDB12588, primers already trimmed.
 Data downloaded from SRA PRJNA774819, primers already trimmed.
- 3. Customer collaboration dataset

- Downloaded from SRA PRJNA846349, reads are Q30 filtered by author.
 Downloaded from SRA PRJNA846349, reads are Q30 filtered by author. Down-sampled to 10k reads per sample.

pb-16S-nf analysis

ATCC MSA-1003-16S

Analysis PacBio HiFi Mock Community 16S Data

DEMO SAMPLE

20 Strain Staggered Mix Genomic Material (ATCC® MSA-1003[™])

DOWNLOAD

Complete 192 plex dataset: http://downloads.pacbcloud.com/public/dataset/atcc_msa/16S_192plex_HiFi.fastq.tar.gz

Example of reads from a single sample:

http://downloads.pacbcloud.com/public/dataset/atcc_msa/demultiplex.16S_For_bc1008--16S_Rev_bc1065.hifi_reads.fastq

Download from Sequel II System 16S HiFi dataset

METHODS

- 16S protocol with Barcoded Primers
- Library prep: SMRTbell Express Template Prep Kit 2.0
- Sequencing: Sequel II System binding kit
- Run time: 0.5 hour pre-extension; 10 hour movie
- CCS Analysis: SMRT Link v10.0 Circular Consensus Sequencing Application (ccs 5.0.0)

ATCC MSA-1003 Mock Community

demultiplex.16S_For_bc1005--16S_Rev_bc1056.hifi_reads.fastq.gz demultiplex.16S_For_bc1005--16S_Rev_bc1057.hifi_reads.fastq.gz demultiplex.16S_For_bc1005--16S_Rev_bc1062.hifi_reads.fastq.gz demultiplex.16S_For_bc1005--16S_Rev_bc1075.hifi_reads.fastq.gz demultiplex.16S_For_bc1005--16S_Rev_bc1100.hifi_reads.fastq.gz demultiplex.16S_For_bc1007--16S_Rev_bc1075.hifi_reads.fastq.gz demultiplex.16S_For_bc1020--16S_Rev_bc1059.hifi_reads.fastq.gz demultiplex.16S_For_bc1024--16S_Rev_bc1111.hifi_reads.fastq.gz

Input: Sample & Metadata tsv

A file giving a sample name for each of the FASTQ file that we are going to analyze.

pb_sample.tsv

sample-id absolute-filepath

A-1 <path_to_dataset>/demultiplex.16S_For_bc1005--16S_Rev_bc1056.hifi_reads.fastq
A-2 <path_to_dataset>/demultiplex.16S_For_bc1005--16S_Rev_bc1057.hifi_reads.fastq
A-3 <path_to_dataset>/demultiplex.16S_For_bc1005--16S_Rev_bc1062.hifi_reads.fastq
A-4 <path_to_dataset>/demultiplex.16S_For_bc1005--16S_Rev_bc1075.hifi_reads.fastq
A-5 <path_to_dataset>/demultiplex.16S_For_bc1005--16S_Rev_bc1100.hifi_reads.fastq
A-6 <path_to_dataset>/demultiplex.16S_For_bc1007--16S_Rev_bc1075.hifi_reads.fastq
A-7 <path_to_dataset>/demultiplex.16S_For_bc1020--16S_Rev_bc1059.hifi_reads.fastq
A-8 <path to dataset>/demultiplex.16S_For_bc1024--16S_Rev_bc1059.hifi_reads.fastq

And a file giving the status/info/condition of the sample

# pb_metadata.tsv		
<pre>sample_name condition</pre>		
A-1 RepA		
A-2 RepA		
A-3 RepA		
A-4 RepA		
A-5 RepB		
A-6 RepB		
A-7 RepB		
A-8 RepB		

Download Database and run pipeline

1. Download Databases:

nextflow run main.nf -download_db

With docker (If you use docker, add -profile docker to all Nextflow-related command)

nextflow run main.nf -download_db -profile docker 2. Run pipeline: nextflow run main.nf -input sample.tsv \ --metadata metadata.tsv \ -profile conda \ --outdir results

if using Docker, just add "-profile docker". Modify "nextflow.config" to utilizes HPC job scheduler if desirable [f3/80bcca] process > pb16S:download_db [100%] 1 of 1 ✓ Completed at: 03-7月-2023 17:10:21 Duration : 6m 17s CPU hours : 0.4 Succeeded : 1

Run analysis

Usage

```
$nextflow run main.nf \
```

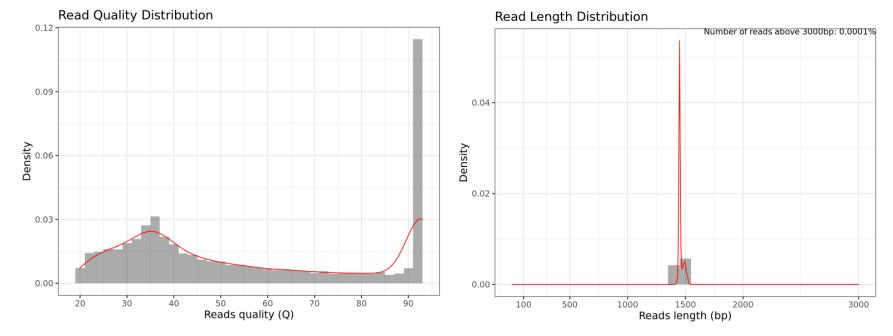
```
--input pb_sample.tsv \
```

```
--metadata pb_metadata.tsv \
```

```
-profile conda \
```

```
--dada2_cpu 80 --vsearch_cpu 80 \
```

```
--outdir PB_16S_2023-03
```


By default, sequences are first trimmed with cutadapt. If adapters are already trimmed, you can skip cutadapt by specifying "-- skip_primer_trim".

Other important options:

```
--dada2_cpu Number of threads for DADA2 denoising (default: 8)
```

```
--vsearch_cpu Number of threads for VSEARCH taxonomy classification (default: 8)
```

--cutadapt_cpu Number of threads for primer removal using cutadapt (default: 16)

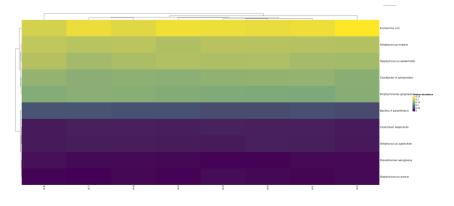
Input reads QC (Before filtering and primers removal)

DADA2 QC metrics

Summarizing Denoised Statistics

	sample-id	input \ddagger	filtered 👙	percentage of input passed filter	denoised	non-chimeric 👙	percentage of input non-chimeric	n_ASV ≑
-	All	All	All	All	All	All	All	All
1	A-1	13581	11458	84.37	11368	11368	83.71	47
2	A-2	13937	11782	84.54	11702	11700	83.95	48
3	A-3	12959	11083	85.52	11016	11014	84.99	46
4	A-4	13555	11478	84.68	11404	11404	84.13	47
5	A-5	12414	10591	85.31	10513	10509	84.65	47
6	A-6	13976	11795	84.39	11725	11725	83.89	47
7	A-7	13619	11589	85.09	11526	11526	84.63	48
8	A-8	12789	10842	84.78	10768	10766	84.18	46

Default pipeline parameters with all data


Summary QC statistics

Samples number: 8

Total number of ASVs found: 50

Average number of ASVs per sample: 47

Total number of reads in 50 ASVs: 90002 (84.25% of all input reads)

Classification using VSEARCH (GTDB r207)

ASVs classified at Species level: 50 (100%)

Percentage reads belong to ASV classified at Species level: 100% ASVs classified at Genus level: 50 (100%)

Percentage reads belong to ASV classified at Genus level 100%

	Genus	¢	Mean supporting reads across samples $\ensuremath{\hat{\diamond}}$	Mean relative abundance across samples $\ensuremath{\psi}$
	All		All	All
1	Escherichia		2472	0.22
2	Streptococcus		2273.62	0.2
3	Staphylococcus		2069.62	0.18
4	Cereibacter A		1703.38	0.15
5	Porphyromonas		1613.5	0.14
6	Bacillus A		613.25	0.05
7	Clostridium		258	0.02
8	Pseudomonas		150.62	0.01
9	Acinetobacter		25.38	0
10	Cutibacterium		14.62	0

Mock Community HiFi Data available for download

• Full-length 16S Data Set

https://github.com/PacificBiosciences/DevNet/wiki/16S-Data-Set-Sequel-II-System-2.0-Release

SAMPLE

20 Strain Staggered Mix Genomic Material (ATCC® MSA-1003™) https://www.atcc.org/products/all/MSA-1003.aspx

METHODS

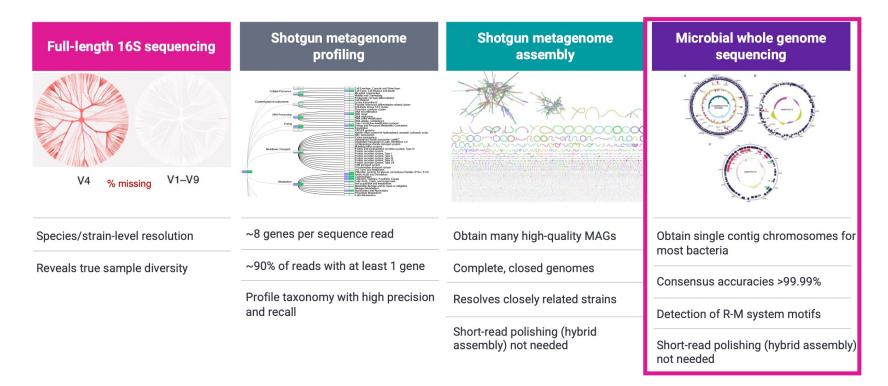
- 16S protocol with Barcoded Primers (https://www.pacb.com/wp-content/uploads/Procedure-Checklist-Full-Length-16S-Amplification-SMRTbell-Library-Preparation-and-Sequencing.pdf)
- Library prep: SMRTbell Express Template Prep Kit 2.0
- Sequencing: Sequel II System binding kit (101-820-500) and chemistry (101-826-100)
- Run time: 0.5 hour pre-extension; 10 hour movie
- CCS Analysis: SMRT Link v10.0 Circular Consensus Sequencing Application (ccs 5.0.0)

DOWNLOAD

Complete 192 plex dataset: http://downloads.pacbcloud.com/public/dataset/atcc_msa/16S_192plex_HiFi.fastq.tar.gz

pb-16S-nf https://github.com/PacificBiosciences/pb-16S-nf

PacBi

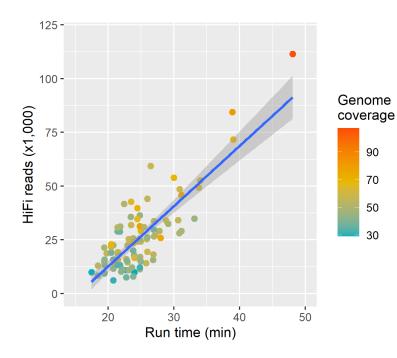

PacBi

Microbial Assembly Analysis Application

04 July 2023 彭彦菱 Lynn Peng | Bioinformatics Engineer, Blossombio Taiwan

PacBio 生物資訊教育訓練 進階班 Advanced Workshop A

HiFi sequencing delivers the most comprehensive and highest quality data for microbial genomics


Microbial whole genome sequencing and assembly with HiFi data

Short turn-around times

Typical time to results for Microbial Assembly analysis is ~20 to 60 minutes*

Minimum compute requirements: Head Node: Cores: 32, RAM: 64 GB, 1 TB local tmp, 256 GB local db_datadir Compute Nodes: Cores: 64, RAM: 4GB per core, 1 TB local tmp, 256 GB local db_datadir

Experimental design and input data requirements

HiFi WGS data analysis recommendations small genomes (microbial multiplexing applications)

Using HiFi reads for de novo assembly and base modification detection analysis of microbial genomes

- Perform CCS analysis on-instrument using the Sequel IIe System or in <u>SMRT Link</u> to generate highly accurate and long single-molecule reads (HiFi reads)
- 15-fold HiFi read coverage per microbe is recommended for most *de novo* assembly projects
 - → Target HiFi Base Yield = [Microbe Genome Size (Mb)]x [Target HiFi Coverage per Microbe]

E.g., for *de novo* assembly analysis of a 5 Mb microbial genome:

Recommended Minimum Target HiFi Base Yield = 5 Mb x 15 = 75 Mb

- Output data in standard file formats, (BAM and FASTA/Q) for seamless integration with downstream analysis tools
- Can use <u>SMRT Link</u> Microbial Genome analysis application for *de novo* assembly and base modification detection analysis using HiFi reads:
 - Easy to use (no requirement for laborious parameter input/optimization)
 - Enables fast and efficient microbial assembly results using HiFi reads (typical time to result is ~20-60 minutes* for analysis of a 96plex microbial data set (up to 375 total sum of genome sizes))
 - Outputs complete, high-quality microbial genome assemblies (including chromosomes and plasmids)

WGS sample preparation procedure description

Procedure & Checklist – Preparing whole genome and metagenome libraries using SMRTbell prep kit 3.0 (<u>102-166-600</u>) describes a method for constructing SMRTbell libraries that are suitable for generating HiFi reads on the Sequel II and IIe systems for WGS and metagenomic shotgun sequencing applications.

Procedure Highlights

- Uses SMRTbell Prep Kit 3.0 (102-182-70) and supports high-throughput processing using 500 ng 5 μg of input genomic DNA amounts
 - We recommend starting with ≥1 µg of input DNA per SMRT Cell 8M (or ~3 µg for up to a 3 Gb WGS sample to enable running 3 SMRT Cells 8M)
- Multiplexing of samples can be performed using SMRTbell barcoded adapter plate 3.0 (102-009-200)
- Recommend shearing high-quality gDNA using a Megaruptor 3 System (Diagenode)
 - 15 kb 18 kb target insert size for large (plant / animal / human) genomes
 - 7 kb 12 kb target insert size for small (microbial) genomes
 - 7 kb 12 kb target insert size for shotgun metagenomic samples
- 4.5-hour workflow time to process up to 8 samples from shearing to size selection (6 hours for 24 samples)
 - Time difference is from DNA shearing, which can be performed in sets of 8 samples.
 - Excludes time needed for DNA sizing QC analysis using a Femto Pulse system.
- WGS SMRTbell libraries can be size-selected using AMPure PB Beads without the need for third-party equipment

Preparing whole genome and metagenome libraries using SMRTbell® prep kit 3.0					
Before you begi	n				
This procedure describes the wo and metagenomic DNA using the					
Overview					
Samples per SMRTbell prep kit 3.0	1-24				
Workflow time	4.5 hours for up to 8 sam Time difference is from E Excludes measuring DNA	NA shearing, which is d	one in sets of 8 samples.		
DNA input					
Quantity	300 ng-5 µg per library				
			Metagenomes		
DNA size distribution (Femto Pulse system)	50% ≿ 30 kb & 90% ≿ 10 kb	90% ≥ 7 kb	90% ≥ 7 kb		
DNA Shearing (Megaruptor 3 system)	Speed 31	Speed 40	Speed 40		
Target fragment lengths	15-18 kb	7-12 kb	7-12 kb		
Size selection required	AMPure® PB beads	none	none		
© 2022 PacBio, All rights reserved. Ret PH 102-166-600 FA V1 18FER0022	search use only. Not for use in die	agnostic procedures.	PacBie		
PH 102-100-000 EA VI 18PEB2022					

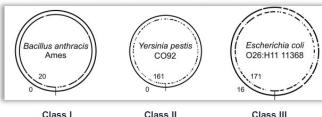
APPLICATIONS WHOLE GENOME SEQUENCING

De Novo assembly & variant detection Microbial assembly Shotgun metagenomics

PacBio Documentation (102-166-600)

Example performance

https://downloads.pacbcloud.com/public/dataset/2021-11-Microbial-96plex/


PacBi

Example sequencing performance for a 96-plex microbial WGS library prepared with SMRTbell prep kit 3.0

Sample preparation workflow

Experiment design

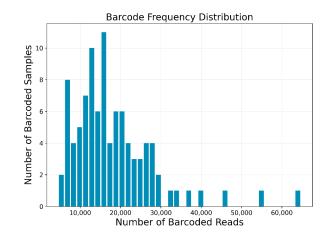
 24 different microbes; each ligated independently to 4 different barcodes for 96-plex

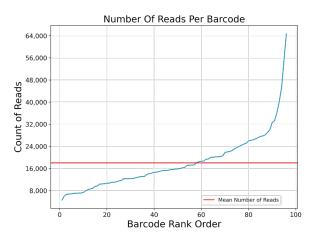
Microbial genome assembly complexity

 $\mbox{Class I}$ – Have few repeats except for the rDNA operon sized 5 to 7 kb

Class II - Class II genomes have many repeats, such as insertion sequence elements, but none greater than 7 kb.

Class III - Contain large, often phage-related, repeats >7 kb.

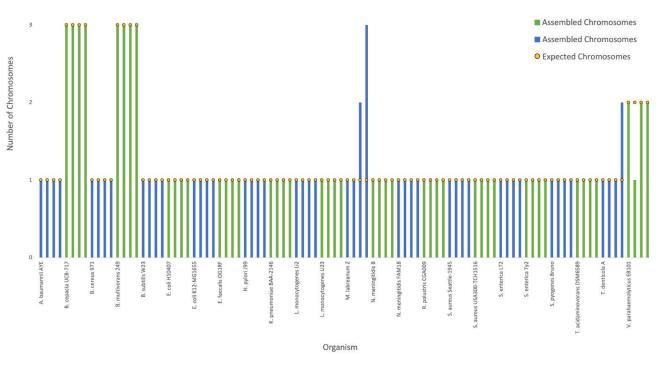

	Microbial species	Genome size (bp)	GC content (%)	Microbial genome complexity	Barcode names
	Acinetobacter baumannii AYE	3,960,239	39.35	Class 3	bc2001 / bc2025 / bc2049 / bc2073
	Bacillus cereus 971	5,430,163	35.29	Class 1	bc2002 / bc2026 / bc2050 / bc2074
41.7	Bacillus subtilis W23	4,045,592	43.5	Class 1	bc2003 / bc2027 / bc2051 / bc2075
itly	Burkholderia cepacia UCB 717	8,569,621	66.6	Class 3	bc2004 / bc2028 / bc2052 / bc2076
	Burkholderia multivorans 249	7,008,277	66.68	Class 3	bc2005 / bc2029 / bc2053 / bc2077
	Enterococcus faecalis OG1RF	2,739,503	37.75	Class 1	bc2006 / bc2030 / bc2054 / bc2078
	Escherichia coli H10407	5,393,109	50.71	Class 1	bc2007 / bc2031 / bc2055 / bc2079
	Escherichia coli K12 MG1655	4,642,522	50.79	Class 1	bc2008 / bc2032 / bc2056 / bc2080
11	Helicobacter pylori J99	1,645,141	39.19	Class 1	bc2009 / bc2033 / bc2057 / bc2081
ij	Klebsiella pneumoniae BAA-2146	5,780,684	56.97	Class 2	bc2010 / bc2034 / bc2058 / bc2082
ij	Listeria monocytogenes Li2	2,950,984	37.99	Class 1	bc2011 / bc2035 / bc2059 / bc2083
/	Listeria monocytogenes Li23	2,979,685	38.19	Class 1	bc2012 / bc2036 / bc2060 / bc2084
	Methanocorpusculum labreanum Z	1,804,962	50.5	Class 1	bc2013 / bc2037 / bc2061 / bc2085
	Neisseria meningitidis FAM18	2,194,814	51.62	Class 3	bc2014 / bc2038 / bc2062 / bc2086
	Neisseria meningitidis Serogroup B	2,304,579	51.44	Class 1	bc2015 / bc2039 / bc2063 / bc2087
	Rhodopseudomonas palustris CGA009	5,459,213	64.9	Class 3	bc2016 / bc2040 / bc2064 / bc2088
	Salmonella enterica LT2	4,950,860	52.24	Class 1	bc2017 / bc2041 / bc2065 / bc2089
	Salmonella enterica Ty2	4,791,947	52.05	Class 1	bc2018 / bc2042 / bc2066 / bc2090
d	Staphylococcus aureus Seattle 1945	2,806,348	32.86	_	bc2019 / bc2043 / bc2067 / bc2091
	Staphylococcus aureus USA300_TCH1516	2,872,915	32.7	Class 1	bc2020 / bc2044 / bc2068 / bc2092
IS	Streptococcus pyogenes Bruno	1,844,942	38.48	_	bc2021 / bc2045 / bc2069 / bc2093
	Thermanaerovibrio acidaminovorans DSM6589	1,852,980	63.78	Class 1	bc2022 / bc2046 / bc2070 / bc2094
	Treponema denticola A	2,842,721	37.87	_	bc2023 / bc2047 / bc2071 / bc2095
	Vibrio parahaemolyticus EB101	5,146,979	45.33	Class 1	bc2024 / bc2048 / bc2072 / bc2096



Example sequencing performance for a 96-plex microbial WGS library prepared with SMRTbell prep kit 3.0 (cont.)

Barcode demultiplexing results

Value	Analysis Metric
96	Unique Barcodes
1,731,704	Barcoded Reads
18,038	Mean Reads
64,709	Max. Reads
4,565	Min. Reads
7,856	Mean Read Length
24,632	Unbarcoded Reads
98.66%	Percent Bases in Barcoded Reads
98.59%	Percent Barcoded Reads

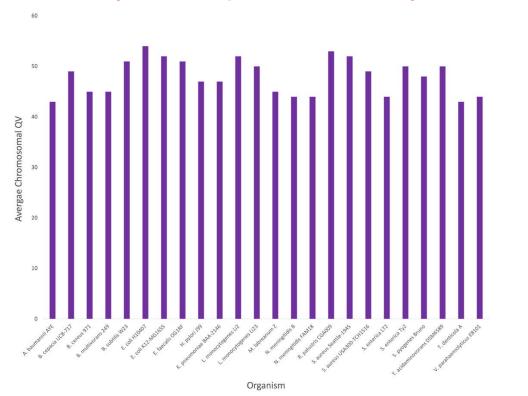


• All 96 barcodes detected

- Mean # of barcoded HiFi reads per microbe is ~18,000
- Mean HiFi base coverage per microbe is 36-fold (Range is 19- to 63-fold)

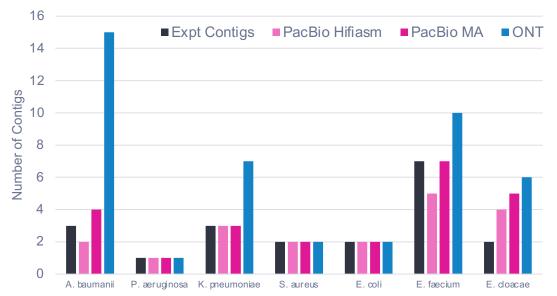
Example sequencing performance for a 96-plex microbial WGS library prepared with SMRTbell prep kit 3.0 (cont.)

HiFi de novo assembly results – assembled chromosomes


 Achieved 1 Contig / Chromosome for 92 out of 96 assemblies
 For all 96 microbes, chromosomal assemblies were complete and of the expected sizes

Microbial assembly statistics from a 96-plex pool of bacteria relevant to food safety and human health. These data were generated on the Sequel II system and assembled with the fully automated HiFibased Microbial Assembly application in SMRT Link using the default parameters, without any manual curation. <u>Download</u> and explore the data yourself.

Example sequencing performance for a 96-plex microbial WGS library prepared with SMRTbell prep kit 3.0 (cont.)


HiFi de novo assembly results - representative assembly accuracies

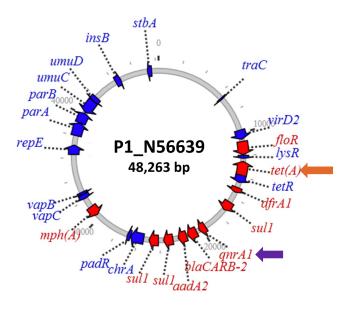
With HiFi data and the Microbial Assembly application in SMRT Link, genome assemblies are consistently >99.99% accurate

PacBi

PacBio superior data quality has real-world consequences for antimicrobial surveillance and susceptibility testing

Microbial Genome Contiguity

- The customer wanted to evaluate the use of different sequencing technologies in their genomicsbased AMR and antibiotic susceptibility pipeline
- PacBio produces more contiguous assemblies than either Illumina or ONT


How does dangerous antibiotic resistance develop and spread?

- Scientists at National Antimicrobial Resistance Monitoring System (NARMS) sequenced *E. coli* found on retail meats
- Identified plasmids mediated quinolone resistance (PMQR) genes on novel plasmid backbones
- Saw evidence of co-selection of resistance to quinolone and antimicrobials used in animal feed and to treat infections in humans
- Read the blog

PacBi

"These details are important in assessing the nature of resistant microbial hazards in food and other sources."¹

48-kb IncR plasmid

Analysis workflow overview

HiFi microbial assembly workflow

HiFi microbial assembly workflow stages

Assemble high-quality microbial chromosomes and plasmids High contiguity, high per-base quality of final microbial assemblies Fast assembly, easy to use, no need for parameter input/optimization

Chromosomal assembly	Mapping and filtering	Plasmid assembly	Filter plasmid contigs	Ori-c rotation & prep for NCBI	Graph-based mapping	Base modification detection
-------------------------	-----------------------------	---------------------	------------------------	--------------------------------	---------------------	-----------------------------------

Filter plasmid contigs

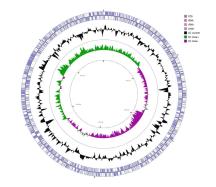
HiFi microbial assembly workflow stages

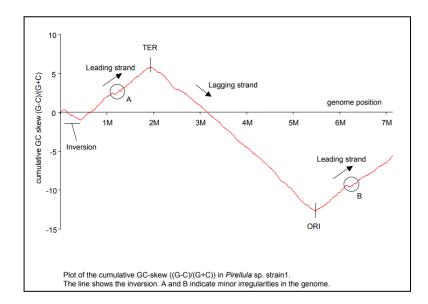
Chromosomal assembly	Mapping and filtering	Plasmid assembly	Filter plasmid contigs	Ori-c rotation & prep for NCBI	Graph-based mapping	Base modification detection
----------------------	-----------------------------	------------------	------------------------	--------------------------------	---------------------	-----------------------------------

Task: filtering of plasmid contigs

Method: map (pbmm2) plasmid contigs to chromosomal contig(s) and filter out contigs with more than 90% gap compressed identity and longer than 300 kb (default)

Ori-c rotation


HiFi microbial assembly workflow stages


Chromosomal assembly	Mapping and filtering	Plasmid assembly	Filter plasmid contigs	Ori-c rotation & prep for NCBI	Graph-based mapping	Base modification detection
----------------------	-----------------------------	---------------------	------------------------	-----------------------------------	------------------------	-----------------------------------

Task: find origin of replication, header and file formatting

Method: GC-skew for origin of replication

detection

Data

File Downloads

Edit C	utput File Name Prefix Example:analysis-Bio Sample 64-955
	File
	Mapped BAM Index
	Mapped BAM
-	Coverage Summary
	Final Polished Assembly for NCBI
	PacBio.Index.SamIndex file
	Modified Base Motifs
-	Per-Base IPDs for IGV
	Final Polished Assembly
	Motif Annotations
-	Final Polished Assembly Index
-	Per-Base Kinetics
-	Modified Bases
-	Analysis Log
-	SMRT Link Log

Final Polished Assembly for NCBI analysis-A_baumannii_AYE_bc2001 -45009-assembly.rotated.polished.renamed.fsa]

>ctg.s1.000000F [topology=circular][completeness=complete]

TCAATTGTGAATAACTTTTTGCACATCCTGTGGATAAATTATCACATAAACTTATCCACAATCCATAAAGACAATAAAAACAGAGTTA TCAACAGTTCAAATATATGTTTTTTTAAATTTAAAACTGTGGAAATCCACAAGAAAAGTCCACACAATAAAGAATAAATTTAAATTTAAA AATTTGAATTTAATAGGGCTGATCCAAATTGTGGATAACTAAAAAATATGAATTTAAATTCAAATATACCAAAATCAAAACCAAC TTCACATCAAGGTTTGTTGGTAAGTATGTAAATAAGAAGTGTATATCTTAAAAAATATGAATTAAAATAAAAATAACAATTACCTTGGCATAA CTTTTAAATAAGAAAAATAGGCTAAATATAAAGAAGAAGATAAAAAGTTAAAAAATTTGACTTAAATAACAATTACCATAATAAGAAGTTTTCAT TGACAGCGTAAACATTGCACAATAAAAAACGCGGACCTTTATAGAAAGATCATTTTGGGAGTTTCGATATGAAACGTACTTTCCAACC ATCTGAATTAAA

Final Polished Assembly: The final polished assembly with applied *oriC* rotation and header adjustment for NCBI submission, in FASTA format.

Final Polished Assembly [analysis-A_baumannii_AYE_bc2001 -45009-p_ctg_oric.fasta]

>ctg.s1.000000F shifted by bp:-1218400/3943308

TCAATTGTGAATAACTTTTTGCACATCCTGTGGGATAAATTATCACATAAACTTATCCACAATCCATAAAGACAATAAAAAACAGAGTTA TCAACAGTTCAAATATATGTTTTTTTAAATTTAAAACTGTGGAAATCCACAAGAAAAGTCCACACAATAAAGAATAAATTTAAATTTTAA AATTTGAATTTAATATGGGCTGATCCAAATTGTGGGATAACTAAAAAATATGGAATTTAAATTCAAATATACCAAAATCAAAACCAAC TTCACATCAAGGTTTGTTGGTAAGTATGTAAATAAGAAGTGTATATCTTAAAAGTCTTAATAAAAATAAACAATTACTTTGGCATAA CTTTTAAATAAGAAAAATAGGCTAAATATAAAGAAGAGAGATAAAAAGTTAAAAATTTGACTTAAATAACAATTACCATTTCACGGTTTTTCAT TGACAGCGTAAACATTGCACAATAAAAAACGGGGACCTTTATAGAAAGATCATTTTGGGAGTTTCGATATGAAACGTACTTTCCAACC ATCTGAATTAAA

Final Polished Assembly: The final polished assembly with applied oriC rotation, in FASTA format.

Analysis results guide

Polished Assembly

SMRT Analysis -			Notifications	Settings	Help	admin
Microbial_assembly-Klebsie	lla Sample8:	2		SUCCESSFUL	🖺 Сору	û De
Analysis Overview	Polished As	embly				
	Value	Analysis Metric				
>Mapping Report	5	Polished Contigs				
	5,435,735	Maximum Contig Length				
Summary Metrics	5,435,735	N50 Contig Length				
Polished contigs from Microbial	5,781,317	Sum of Contig Lengths				
Assembly Hifi	5,117,894	E-size (sum of squares / sum)				
➤Coverage						
Base Modifications						
>Modified Base Motifs						
>Data						

Polished Assembly

SMRT Analysis - Notifications Settings Help admin (Ad						
Microbial_assembly-Klebsiella Samp		SUCCESSFUL 🕒 Copy 🗊 Delet				
>Analysis Overview	Polished contigs from Microbial As	sembly Hifi				
	Contig	Length	Circular	Coverage		
Mapping Report	ctg.s1/p/c/000000/0	5,435,735	yes	34		
	ctg.s2/p/c/00000/0	140,824	yes	29		
Summary Metrics	ctg.s2/p/c/000001/0	117,755	yes	30		
Polished contigs from Microbial Assembly Hifi	ctg.s2/p/c/000002/0	85,164	yes	32		
➤Coverage	ctg.s2/p/c/000003/0	1,839	yes	11		
Coverage						
Sase Modifications						
> Modified Base Motifs						
>Data						

PacBie Klebsiella pneumoniae BAA-2146

Data

File Downloads

Edit Output File Name Prefix Example:analysis-Bio Sample 64-955
File
Mapped BAM Index
Apped BAM
Coverage Summary
Final Polished Assembly for NCBI
PacBio.Index.SamIndex file
Modified Base Motifs
Per-Base IPDs for IGV
Final Polished Assembly
Motif Annotations
Final Polished Assembly Index
Per-Base Kinetics
Modified Bases
🗎 Analysis Log
SMRT Link Log

Final Polished Assembly for NCBI analysis-A baumannii AYE bc2001 -45009-assembly.rotated.polished.renamed.fsa]

>ctg.s1.000000F [topology=circular][completeness=complete]

TCAATTGTGAATAACTTTTTGCACATCCTGTGGATAAATTATCACATAAACTTATCCACAATCCATAAAGACAATAAAAACAGAGTTA TCAACAGTTCAAATATATGTTTTTTTAAATTTAAAACTGTGGAAATCCACAAGAAAAGTCCACACAATAAAGAATAAATTTAAATTTTAA AATTTGAATTTAATAGGGCTGATCCAAATTGTGGGATAACTAAAAAATATGGATTTAAATTCAAATATACCAAAATCAAAACCAAC TTCACATCAAGGTTTGTTGGTAAGTATGTAAATAAGAAGTGTATATCTTAAAAAATATGAATTAAAATAAAAATAACAATTACCTTGGCATAA CTTTTAAATAAGAAAAATAGGCTAAATATAAAGAAGAAGATAAAAAGTTAAAAAATTTGACTTAAATAACAATTACCATCACGGTTTTTCAT TGACAGCGTAAACATTGCACAATAAAAAAACGCGGACCTTTATAGAAAGATCATTTTGGGAGTTTCGATATGAAACGTACTTTCCAACC ATCTGAATTAAA

Final Polished Assembly: The final polished assembly with applied *oriC* rotation and header adjustment for NCBI submission, in FASTA format.

Final Polished Assembly [analysis-A_baumannii_AYE_bc2001 -45009-p_ctg_oric.fasta]

>ctg.s1.000000F shifted by bp:-1218400/3943308

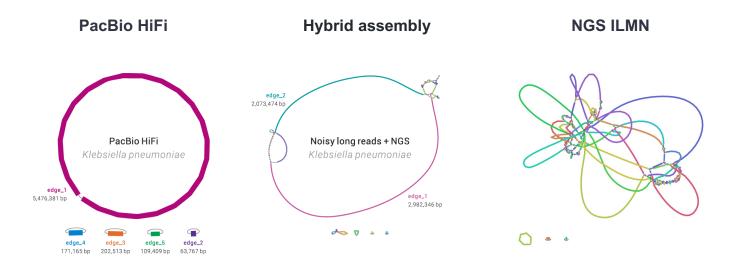
TCAATTGTGAATAACTTTTTGCACATCCTGTGGGATAAATTATCACATAAACTTATCCACAATCCATAAAGACAATAAAAAACAGAGTTA TCAACAGTTCAAATATATGTTTTTTTAAATTTAAAACTGTGGAAATCCACAAGAAAAGTCCACACAATAAAGAATAAATTTAAATTTTAA AATTTGAATTTAATATGGGCTGATCCAAATTGTGGGATAACTAAAAAATATGGAATTTAAATTCAAATATACCAAAATCAAAACCAAC TTCACATCAAGGTTTGTTGGTAAGTATGTAAATAAGAAGTGTATATCTTAAAAGTCTTAATAAAAATAAACAATTACTTTGGCATAA CTTTTAAATAAGAAAAATAGGCTAAATATAAAGAAGAGAGATAAAAAGTTAAAAATTTGACTTAAATAACAATTACCATTTCACGGTTTTTCAT TGACAGCGTAAACATTGCACAATAAAAAACGGGGACCTTTATAGAAAGATCATTTTGGGAGTTTCGATATGAAACGTACTTTCCAACC ATCTGAATTAAA

Final Polished Assembly: The final polished assembly with applied oriC rotation, in FASTA format.

Cromwell workflow key output files

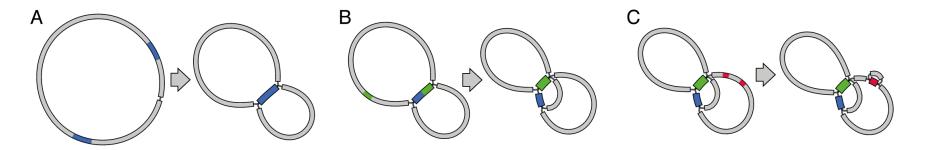
basemods.csv		mapped.bam				
basemods.gff		mapped.bam.bai	Mapped BAM and Index			
modifications.report.json	Base modification and motifs	mapped.consensus	salignmentset.xml			
motifs.csv	Dase modification and motifs	mapping_stats.report.json				
motifs.gff		polished_assembly.fasta				
motifs.report.json		polished_assembly.fasta.fai				
ipds.bw		polished assembly	v.report.json	Final Polished		
	•	assembly.rotated.p	olished.renamed.fsa	Assembly for		
collected_circ.txt		p_ctg_oric.fasta				
		final_assembly.fast	ta.fai	d Assembly and Index		

coverage.gff Coverage Summary


coverage.report.json

PacBi

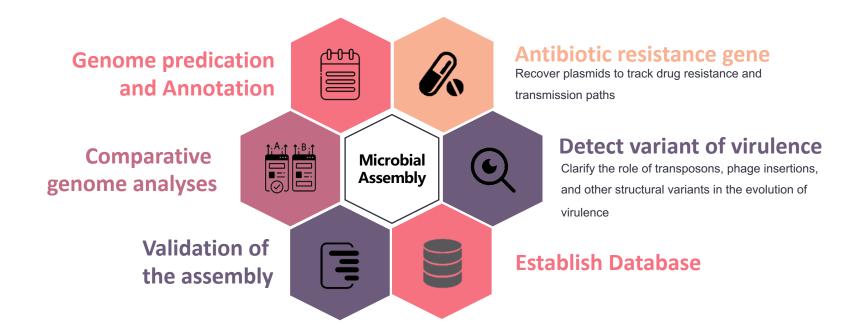
Case Study Sharing


Visualization and comparison of WGS assemblies for *K. pneumoniae*

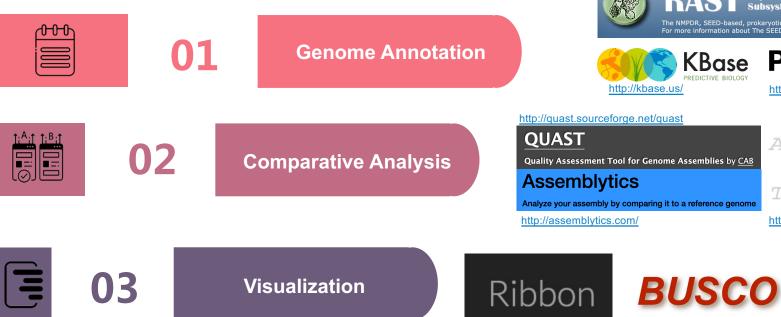
	PacBio HiFi	ONT + ILMN	ILMN
Coverage	40X	69X (ONT), 34X (ILMN)	34X
Contig N50	5.47 Mb	2.1 Mb	0.3 Mb
Number of contigs	5	47	220
Assembler	Flye	Unicycler	Unicycler

PacBi

Limitations of short reads


The main reason we can 't get a complete assembly from short reads is that DNA usually contains *repeats* – the same sequence occurring two or more times in the genome.

To complete a bacterial genome assembly (i.e. find the one correct sequence for each chromosome/plasmid), we need to resolve the repeats. This means finding which way into a repeat matches up with which way out. **Short reads don't have enough information for this but** *long reads* **do**.


Downstream Applications

Downstream Application

Useful tools for further analysis

http://rast.theseed.org/FIG/rast.cgi

Rapid Annotation using Subsystem Technology version 2.0

The NMPDR, SEED-based, prokaryotic genome annotation service. For more information about The SEED please visit theSEED.org

https://github.com/tseemann/prokka

Quality Assessment Tool for Genome Assemblies by CAB Analyze your assembly by comparing it to a reference genome

AMUMMERA3BL MUMMER 3 +TMUMMER.3DR

http://mummer.sourceforge.net/

https://igv.org/

http://genomeribbon.com/

https://busco.ezlab.org/

PacBi

Integrative

Genomics Viewer

Useful tools for further analysis

Genome Annotation

- Kbase: <u>http://kbase.us/</u>
- Prokka: <u>https://github.com/tseemann/prokka</u>
- RAST: <u>http://rast.theseed.org/FIG/rast.cgi</u>

Comparative Analysis

- QUAST: <u>http://quast.sourceforge.net/quast</u>
- MUMMER: <u>http://mummer.sourceforge.net/</u>
- Assemblytics: <u>http://assemblytics.com/</u>

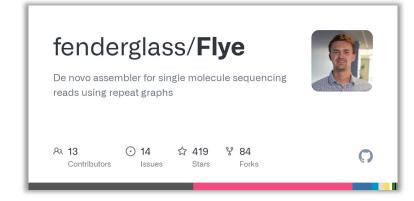
Visualization

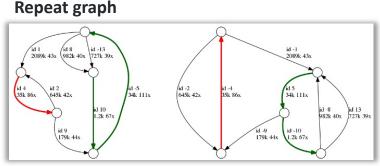
- Ribbon: <u>http://genomeribbon.com/</u>
- IGV: <u>https://igv.org/</u>
- BUSCO: https://busco.ezlab.org/

Other Genome Assembly tools

- FLYE: <u>https://github.com/fenderglass/Flye</u>
- Canu(including Trio Binning Assembly):
 - <u>https://github.com/marbl/canu</u>
 - <u>https://canu.readthedocs.io/en/latest/quick-start.html</u>
- hifiasm: <u>https://hifiasm.readthedocs.io/en/latest/index.html</u>

Flye assembler

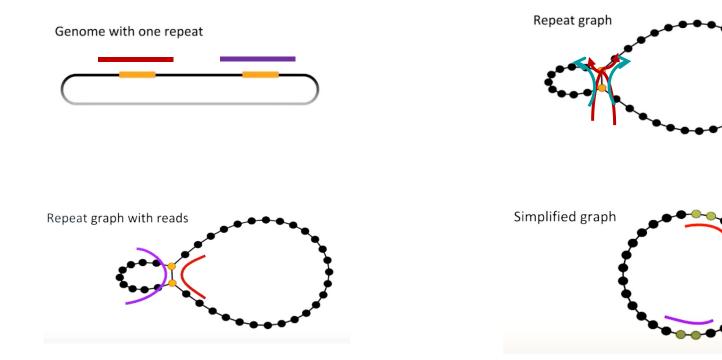

De novo assembler for single molecule sequencing reads.


It is designed for a wide range of datasets, from small bacterial projects to large mammalian-scale assemblies.

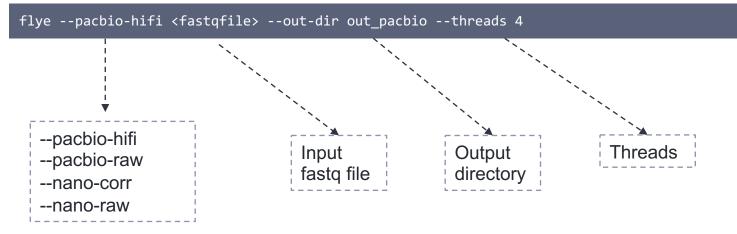
The package represents a complete pipeline.

Supported Input Data:

- Oxford Nanopore (ONT reads)
- PacBio (raw, corrected and HiFi reads)

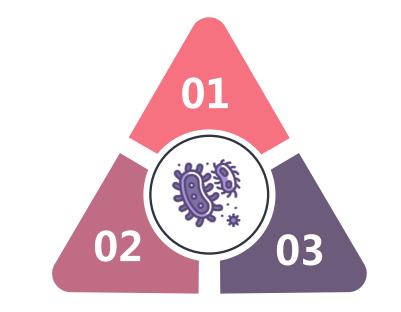


Repetitive edges are colored / Unique edges are black


Untangling Repeat Graph

PacBi

Quick usage for Flye assembler


E. coli K12 PacBio data

• For **PacBio HiFi** use the <u>--pacbio-hifi</u> mode. The default error-rate is 0.001 (in HPC space), and works well for the default CCS algorithm settings (e.g. 3+ polymerase passes).

The original dataset is available at the 2021-11-Microbial-96-plex

Analysis Interpretation

Sequence consistency

Assemble Quality

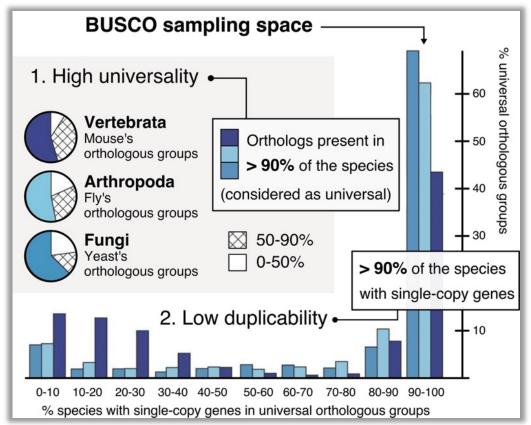
Contig length & number, contigN50, circular...etc.

Mapping rate and coverage, Mean Concordance (mapped)

Assembly Complete

BUSCO (Benchmarking Universal Single-Copy Orthologs)

Evaluate the results of genome assembly


The analysis results of SMRT Analysis

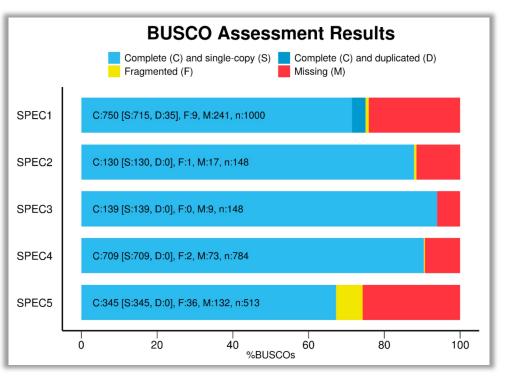
SMRT Analysis / Analysis Results Microbial Assembly Demo			S		Projects: All My F							
> Analysis Overview	Polished Contigs											
✓Polished Assembly	Contig	Length (bases)	Circular	Coverage	Mean QV							
Summary Metrics	ctg.s1.000000F arrow	5,476,392	yes	1,244	93.00							
Polished Contigs	ctg.s2.94 arrow	202,511	yes	1,073	92.55							
Contig Coverage vs. Confidence	ctg.s2.96 arrow	171,165	yes	1,505	93.00							
>Alignment to Draft	ctg.s2.98 arrow	109,409	yes	792	93.00							
Assembly	ctg.s2.100 arrow	63,767	yes	1,895	93.00							
>Coverage	ctg.s2.000002F arrow	21,796	no	332	0.00							
>Data	ctg.s2.000034F arrow	9,988	no	148	93.00							

Assembly Complete - BUSCO

BUSCO attempts to provide a quantitative assessment of the completeness in terms of expected gene content of a genome assembly, transcriptome, or annotated gene set.

The latest BUSCO versions introduce new functionalities for assessments of **eukaryotic**, **prokaryotic**, and **viral data**.

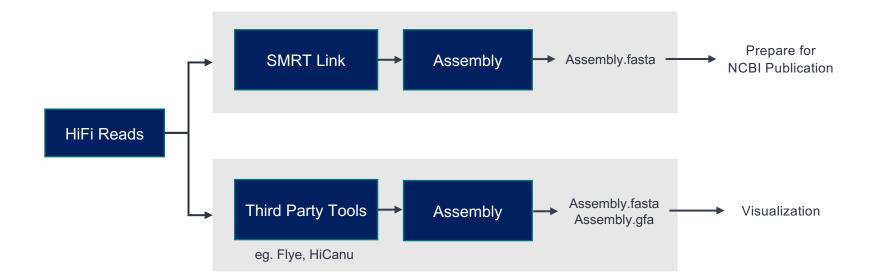
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution [Internet]. Available from: <u>https://doi.org/10.1093/molbev/msab199</u>


Assembly Complete - BUSCO

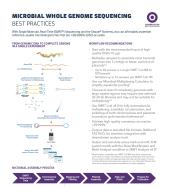
• Report results in simple BUSCO notation:

***** Results:	****
C:75%[S:71.5%,D:	3.5%],F:0.9%,M:24.1%,n:1000
750	Complete BUSCOs (C)
715	Complete and single-copy BUSCOs (S)
35	Complete and duplicated BUSCOs (D)
9	Fragmented BUSCOs (F)
241	Missing BUSCOs (M)
1000	Total BUSCO groups searched

short_summary_*.txt


- Use the generate_plot.py script to produce simple graphical summaries for your publication' s supporting online information.
- Highly recommend using the BUSCO container, whose version is sufficient to safely reproduce a run.

Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution [Internet]. Available from: https://doi.org/10.1093/molbev/msab199


Bioinformatics workflow for microbial assembly

Documentation

Documentation

Summary overview of application-specific sample preparation and data analysis workflow recommendations

Procedure & Checklist – Preparing whole genome and metagenome libraries using SMRTbell prep kit 3.0 (<u>102-</u> <u>166-600</u>)

Technical documentation containing sample library construction and sequencing preparation protocol details

SMRT Link User Guide – Sequel Systems (102-278-200)

Technical documentation describing how to use SMRT Link software. SMRT Link is the webbased end-to-end workflow manager for Sequel Systems.

The command-line tools are installed as an integral component of the SMR Link software. For installation details, see SMRT Link Software Installation (v10.2).

 To install only the command-line tools, use the --sarttools-only option with the installation command, whether for a new installation or an upgrade. Examples:

smrtlink-*.run --rootdir smrtlink --smrttools-only smrtlink-*.run --rootdir smrtlink --smrttools-only --upgrad

Supported Chemistry

SMRT Link v10.2 supports all chemistry versions for Sequel[®] II Systems and chemistry v2.1 and later for Sequel Systems.

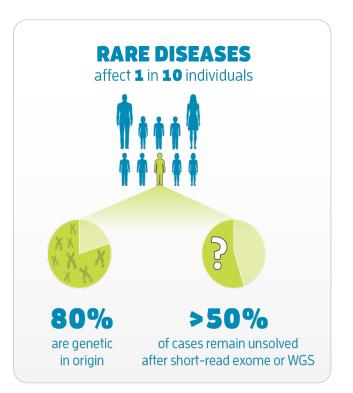
Pacific Biosciences Command-Line Tools

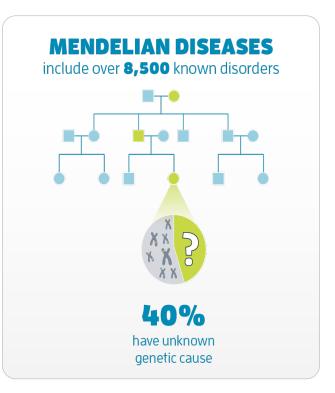
Following is information on the Pacific Biosciences-supplied command-line tools included in the installation. Third-party tools installed are described at the end of the document.

Tool	Description
bam2fasts/ bam2fastq	Converts PacBio [®] BAM files into gzipped FASTA and FASTQ files. See "bam2fista/bam2fistq" on page 2.
bansieve	Generates a subset of a BAM or PacBio Data Set file based on either a list of hole numbers, or a percentage of reads to be randomly selected. Set "basected" or page 3.
cca	Calculates consensus sequences from multiple "passes" around a circularized single DNA molecule (SMRTbell" template). See "ccs" on page 6.
dataset	Creates, opens, manipulates and writes Data Set XML files. See "dataset" on page 14.
Demultiplex Barcodes	Identifies barcode sequences in PacBio single-molecule sequencing data. See "Denuitiplex Barcodes" on page 20.

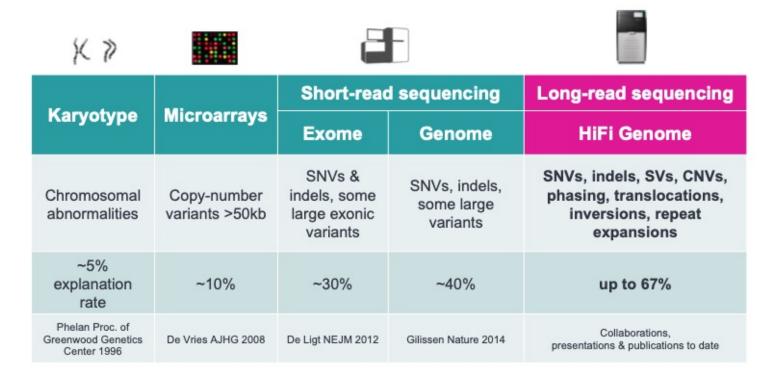
SMRT Tools Reference Guide (102-278-500)

Technical documentation describing command line tools included with SMRT Link. These tools are for use by bioinformaticians working with secondary analysis results.

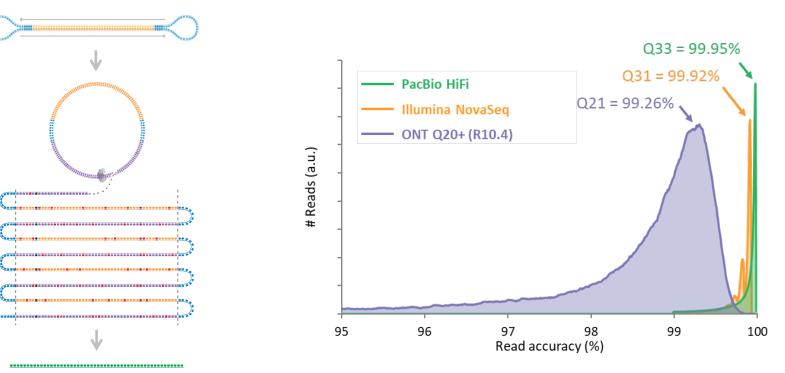

PacBi


Human WGS Variant Calling

4 July 2023 彭彥菱 Lynn Peng | Bioinformatics Engineer, Blossombio Taiwan


PacBio 生物資訊教育訓練 進階班 Advanced Workshop A

Rare & inherited diseases



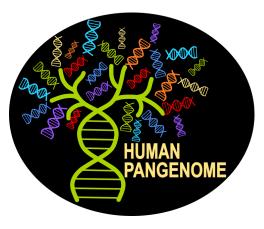
More complete detection yields more insights

HiFi reads are long and accurate sequence reads

PacBio HiFi: HG003 18 kb library, Sequel II System Chemistry 2.0, <u>precisionFDA Truth Challenge V2</u> Illumina: HG002 2×150 bp NovaSeq library, <u>precisionFDA Truth Challenge V2</u> ONT: Q20+ chemistry (R10.4, Kit 12), <u>Oct 2021 GM24385 Dataset Release</u>

HiFi read >99.9% accuracy Up to 25 kb

HiFi reads underlie first telomere-to-telomere assembly of a human genome


"High accuracy long-read sequencing has finally removed this technological barrier, enabling comprehensive studies of genomic variation across the entire human genome, which we expect to drive future discovery in human genomic health and disease."

T2T-CHM13 v2.0 assembly with sequences soft-masked using the repeat models discovered by the T2T team

Fast, high-quality human de novo assemblies with HiFi reads

Human Pangenome Reference Consortium

New references from 350 human genomes

HG01891	HG01258	HG03540	HG01106	HG00673	HG02109	NA19240
HG02486	HG03516	HG03453	HG01175	HG002	HG02145	NA20129
HG02559	HG02572	HG03579	HG00741	HG005	HG02723	NA21309
HG02257	HG02886	HG01978	HG00735	HG00733	HG02818	
HG01358	HG02717	HG01928	HG01071	HG01109	HG03486	
HG01123	HG02630	HG02148	HG00621	HG01243	HG03492	
HG01361	HG02622	HG01952	HG00438	HG02080	NA18906	

PacBie https://github.com/human-pangenomics/HPP Year1 Data Freeze v1.0

Adoption by leading medical institutes + consortia

Invitae and Pacific Biosciences Collaborate to Develop Whole Genome Sequencing-Based Assays for Pediatric Epilepsy Diagnostics

SOLVE-RD Team Adopts PacBio Sequel II System to Solve Rare Diseases

NIH funds new All of Us Research Program genome center to test advanced sequencing tools

PacBio and UCLA Health Announce Research Collaboration for Whole Genome Sequencing in Rare Diseases

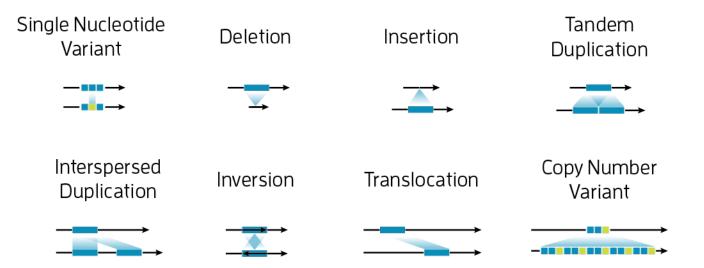
Tuesday, December 7, 2021

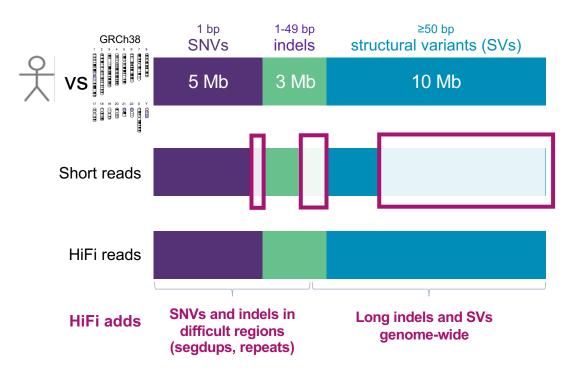
Radboud Universiteit

UNIVERSITY of WASHINGTON

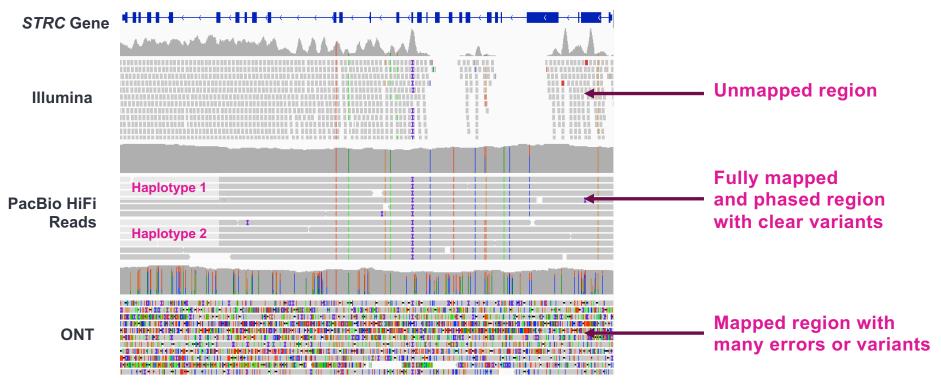
https://www.pacb.com/blog/solve-rd-team-adopts-pacbio-sequel-ii-system-to-solve-rare-diseases/ https://investor.pacificbiosciences.com/news-releases/news-release-details/childrens-mercy-kansas-city-teams-pacific-biosciences-fight-rare https://allofus.nih.gov/news-events-and-media/announcements/nih-funds-new-all-us-research-program-genome-center-test-advanced-sequencing-tools https://investor.pacificbiosciences.com/node/11431/pdf

Genomic


Enala


Defining and detecting structural variants

Types of variants in a genome



HiFi reads provide a comprehensive view of variation in the genome

PacBio Huddleston et al. (2017) Genome Research 27(5):677-85.

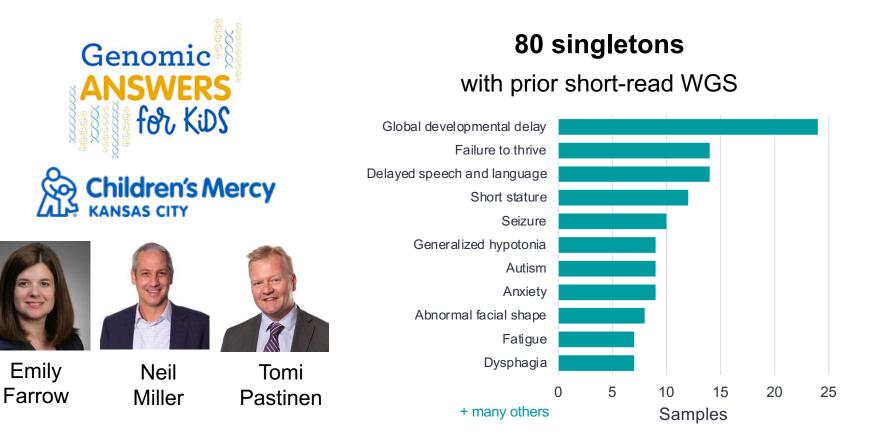
Detect more variants in medically relevant genes

HG002 GRCh38 chr15:43,599,422-43,619,001 (19 kb)

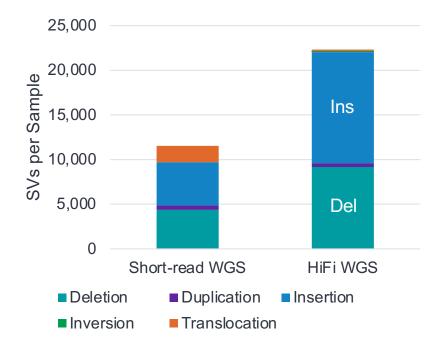
PacBi

Illumina: HiSeq 2x250 (NHGRI_Illumina300X_AJtrio_novoalign_bams) ONT: ultralong (guppy-V3.2.4_2020-01-22) / PacBio HiFi: Sequel II System Chemistry 2.0 (PacBio_CCS_15kb_20kb_chemistry2) STRC gene alignments from Genome in a Bottle (GIAB), HG002_NA24385_son. (IGV settings)

More variants + higher accuracy in "challenging" medically-relevant genes

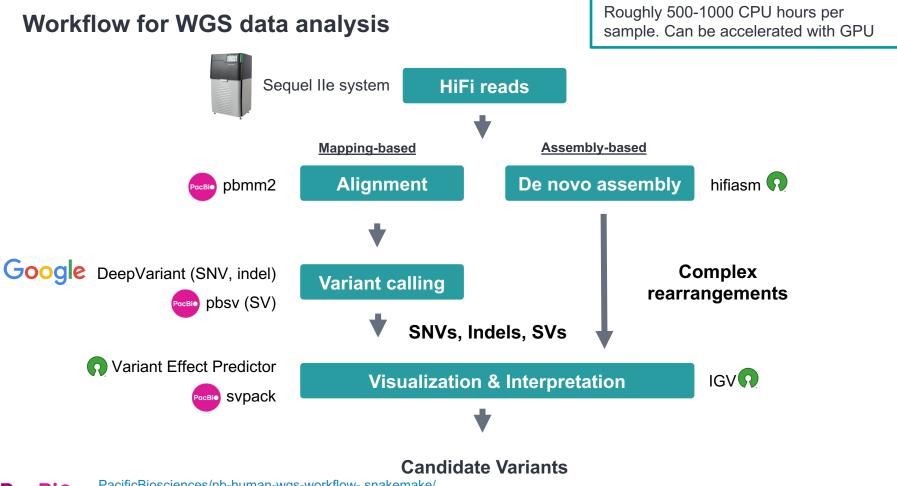

Percentage of problem exons mappable	Genes	No. of genes	
100	ABCC6, ABCD1, ACAN, ACSM2B, AKR1C2, ALG1, ANKRD11, BCR, CATSPER2, CD177, CEL, CES1, CFH, CFHR1, CFHR3, CFHR4, CGB, CHEK2, CISD2, CLCNKA, CLCNKB, COR01A, COX10, CRYBB2, CSH1, CYP11B1, CYP11B2, CYP21A2, CYP2A6, CYP2D6, CYP2D6, CYP2F1, CYP4A22, DDX11, DHRS4L1, DIS3L2, DND1, DPY19L2, DUOX2, ESRRA, F8, FAM120A, FAM205A, FANCD2, FCGR1A, FCGR2A, FCGR3A, FCGR3B, FLG, FLNC, FOXO4, FOXO3, FUT3, GBA, GFRA2, GON4L, GRM5, GSTM1, GYPA, GYPB, GYPE, HBA1, HBA2, HBG1, HBG2, HP, HS6ST1, IDS, IFT122, IKBKG, IL9R, KIR2DL1, KIR2DL3, KMT2C, KRT17, KRT6A, KRT6B, KRT6C, KRT81, KRT86, LEFTY2, LPA, MST1, MUC5B, MYH6, MYH7, NEB, NLGN4X, NLGN4Y, NOS2, NOTCH2, NX55, OPN1LW, OR275, OR51A2, PCDH11X, PCDHB4, PGAM1, PHC1, PIK3CA, PKD1, PLA2G10, PLEKHM1, PLG, PMS2, PRB1, PRDM9, PROS1, RAB40AL, RALGAPA1, RANBP2, RHCE, RHD, RHPN2, ROCK1, SAA1, SDHA, SDHC, SFTPA1, SFIGA2, SIGLEC14, SLC6A8, SMG1, SPATA31C1, SPTLC1, SRGAP2, SSX7, STA15B, STK19, STRC, SULT1A1, SUZ12, TBX20, TCEB3C, TLR1, TLR6, TMEM231, TNXB, TRIOBP, TRPA1, TTN, TUBA1A, TUBB2B, UGT1A5, UGT2B15, UGT2B17, UNC93B1, VCY, VWF, WDR72, ZNF419, ZNF592, ZNF674	152	
[75, 100)	ANAPC1, C4A, C4B, CHRNA7, CR1, DUX4, FCGR2B, HYDIN, OTOA, PDPK1, TMLHE		
[50, 75)	ADAMTSL2, CDY2A, DAZ1, GTF2I, NAIP, OCLN, RPS17		
[25, 50)	DAZ2, DAZ3, KIR3DL1, OPN1MW, PPIP5K1	11	- 7
(0, 25)	NCF1, RBMY1A1		<u> </u>
0	BPY2, CCL3L1, CCL4L1, CDY1, CFC1, CFC1B, GTF2IRD2, HSFY1, MRC1, OR4F5, PRY, PRY2, SMN1, SMN2, TSPY1, XKRY	16	

PacBio resolves most (152/193) of these genes completely with 13.5 kb reads



PacBie https://www.nature.com/articles/s41587-019-0217-9

HiFi sequencing in a rare disease cohort


Structural variants

	Short-read WGS	HiFi WGS	Expected ^{1,2}
Deletion	4,374	9,174	9,219
Duplication	488	442	408
Insertion	4,844	12,437	14,456
Inversion	-	94	117
Translocation	1,823	162	113
Total	11,529	22,309	24,313

Deletion, Insertion, Inversion (average of 32 genomes): Ebert, P. et al. (2021) Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science. doi:10.1126/science.abf7117; Duplication, Translocation (HG003): Sedlazeck, F.J. et al. (2018) Accurate detection of complex structural variations using single molecule sequencing. Nat Methods. doi:10.1038/s41592-018-0001-7

PacificBiosciences/pb-human-wgs-workflow- snakemake/

PacificBiosciences / pb-human-wgs-workflow-snakemake Public ed from williamrowell/pb-human-wgs-workflow-snakemake	⊙ Watch 4 → 😵 Fork 7 🛱 Star 8 →
S> Code 💿 Issues 4 👔 Pull requests 6 💿 Actions 🖽 Projects 🖽 Wiki	③ Security 🗠 Insights
ع main ج pb-human-wgs-workflow-snakemake / Tutorial.md	Go to file
williamrowell Update Tutorial.md	Latest commit 601b6b7 25 days ago 🕚 History
Ra 2 contributors 🦻 🌏	
Ξ 517 lines (431 sloc) 29.3 KB	<> 🗅 Raw Blame 🖵 🖓 Ü
517 lines (431 sloc) 29.3 KB Tutorial for PacBio Human WGS Workflow Table of Contents	<> C Raw Blame D C 2
Tutorial for PacBio Human WGS Workflow	<> C Raw Blame C C C
Tutorial for PacBio Human WGS Workflow Table of Contents • Workflow Overview • Getting Started	<> C Raw Blame C C 2
Tutorial for PacBio Human WGS Workflow Table of Contents • Workflow Overview • Getting Started • 1. Dependencies	<> C Raw Blame D C 2
Tutorial for PacBio Human WGS Workflow Table of Contents • Workflow Overview • Getting Started • 1. Dependencies • 2. Prepare Workspace	Raw Blame L
Tutorial for PacBio Human WGS Workflow Table of Contents • Workflow Overview • Getting Started • 1. Dependencies • 2. Prepare Workspace • 3. Configuration Files	Raw Blame L
Tutorial for PacBio Human WGS Workflow Table of Contents • Workflow Overview • Getting Started • 1. Dependencies • 2. Prepare Workspace	Raw Blame D C 2

PacBi

https://github.com/PacificBiosciences/pb-human-wgs-workflow-snakemake/blob/main/Tutorial.md

Process smrtcells Aligns HiFi reads reference genome also for QC to confirm. pbmm2 Align HiFi reads to reference genome (GRCh38) mosdepth Calculate aligned coverage depth Generate read length and QC Calculate depth ratio (chrX:chrY) jellyfish Count kmers in HiFi reads to dump and Export modimers for sample swap detection.

Process sample

Variant discovery, variant calling, and assembly for each sample.

pbsv

Call structural variants

DeepVariant

Call small variants

Whatshap

Phased small variants and generate merged, haplotagged BAM

Hifiasm

Assemble reads

TRGT

Genotype tandem repeat

pb-cpg-tools

Generate list of CpG/5mC sites and modification probabilities

Process cohort

Variants are prioritized, annotated, and filtered find candidate rare variants with functional consequence.

pbsv

Joint call structural variants

GLnexus

Joint call small variants

slivar

Annotate and filter small variant with population AF from gnomAD and HRTC

svpack

Annotate and filter structural variant

calN50

Calculate assembly status

1. Dependencies

- singularity >= 3.5.3 installed by root
- conda
- other
 - lockfile==0.12.2
 - python3
 - snakemake>=5.19
 - mamba (optional, but recommended)

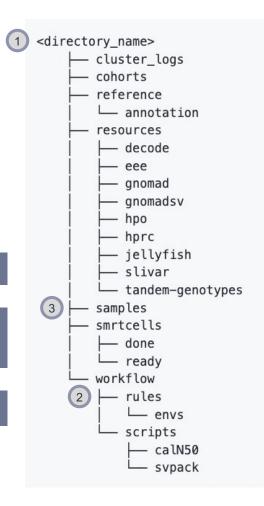
Recommend at least 80 cores and 1TB RAM for local execution. Local execution will use all available cores.

The following command creates a conda environment named pacbio-human-wgs with the final requirements.

create conda environment conda install mamba -n base -c conda-forge conda activate base mamba create -c conda-forge -c bioconda -n pb-human-wgs snakemake=6.15.3 tabulate=0.8.10 pysam=0.16.0.1 python=3 conda activate pacbio-human-wgs

2.1 Prepare Workspace

- These snakemake workflows require a very specific directory structure in order to function properly.
- Empty directories that will store input and output files from the analysis were not built into the repo.


mkdir <directory_name> cd <directory_name>

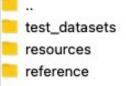
git clone --recursive https://github.com/PacificBiosciences/pb-humanwgs-workflow-snakemake.git workflow

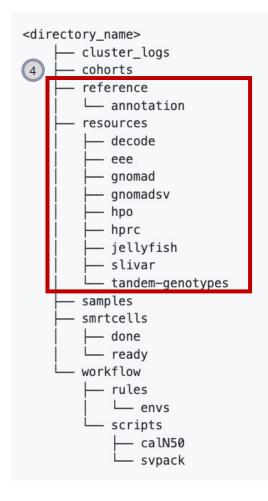
3

2

mkdir -p cluster_logs smrtcells/ready smrtcells/done samples cohorts

2.2 Additional folders


There are two additional folders (reference/ and resources/) which contain


content necessary for these workflows to run.

These folders can be downloaded from the ftp account below:

There are also some test datasets available from this ftp account, for making sure that the workflow runs as expected. These include only chromosomes chr2, chrX, chrY, and chrM for samples HG002, HG003, and HG004.

3.1 Analysis Configuration Files

Configuration files are written with yaml syntax. The following configuration files require your attention before running the workflows.

cohort.yaml

- # Singleton
- id: <cohort_id>
- phenotypes:
- HP:000001
- affecteds:
- id: singleton-sampleid sex: MALE

Trio

- id: <cohort_id>
 phenotypes:
 - phenotypes
 - HP:000001
 - affecteds:
 - id: trio-probandid parents:
 - trio-fatherid
 - trio-motherid

sex: MALE

- unaffecteds:
- id: trio-fatherid sex: MALE
- id: trio-motherid
 sex: FEMALE

config.yaml

- smrtcells_targets:
- alignment
- stats # req: alignment
- coverage # req: alignment
- coverage_qc # req: alignment
- kmers

sample_targets:

- pbsv_vcf # req: alignment in config['smrtcells_targets']
- deepvariant # req: alignment in config['smrtcells_targets']
- # whatshap # req: deepvariant
 - coverage # req: whatshap
 - kmers # req: kmers in config['smrtcells_targets']
 - assembly
 - tandem-genotypes # req: whatshap

cohort_targets:

- pbsv_vcf # req: pbsv_vcf in config['sample_targets']
- svpack # req: pbsv_vcf in config['sample_targets']
- deepvariant_vcf # req: deepvariant, whatshap in config['sample_targets']
- slivar # req: deepvariant, whatshap in config['sample_targets']
- trio_assembly

3.2 Human Phenotype Ontology

PacBi

The Human Phenotype Ontology (HPO) provides a standardized vocabulary of phenotypic abnormalities encountered in human disease. Each term in the HPO describes a phenotypic abnormality, such as Deafness. The HPO is currently being developed using the medical literature, Orphanet, DECIPHER, and OMIM. HPO currently contains over 13,000 terms and over 156,000 annotations to hereditary diseases.

	human phenotype ontology										
	All	•	Search for phenotypes, diseases or genes								
			e.g. Arachnodactyly Marfan syndrome FBN1								
https://hpo.jax.org/app/											

4. Run Analysis

- Input data

Create a directory for each sample in smrtcells/ready. The names of these directories must match the sample IDs specified in cohort.yaml.

mkdir smrtcells/ready/<sample_id>

Put PacBio HiFi reads into their respective directories. The easiest way to do this is with a symlink. Note: unaligned

BAM and FASTQ filenames must be identifiable as HiFi reads, i.e. have the following format.

4. regex for BAM: /m\d{5}[Ue]?_\d{6}_\d{6}.(ccs|hifi_reads).bam

4. example: m54119U_210108_012126.ccs.bam

5. example: m64013e_210917_004210.hifi_reads.bam

5. regex for FASTQ: /m\d{5}[Ue]?_\d{6}_\d{6}.fastq.gz

4. example: m54119U_210108_012126.fastq.gz

5. example: m64013e_210917_004210.fastq.gz

4. Run Analysis

- Example Trio sample

smrtcells/ready/

— HG002

m64012_190920_173625.ccs.bam # HiF	iFi uBAMs are a	valid input	type
------------------------------------	-----------------	-------------	------

└─── m64012_190921_234837.ccs.bam

---- m64015_190920_185703.ccs.bam

m64015_190922_010918.ccs.bam

— нд003

- m54262U_191105_163601.fastq.gz # HiFi FASTQs are also a valid input type

m64017_191120_193948.fastq.gz

--- m64017_191202_204405.fastq.gz

— m64017_191205_225630.fastq.gz

— HG004

Расы

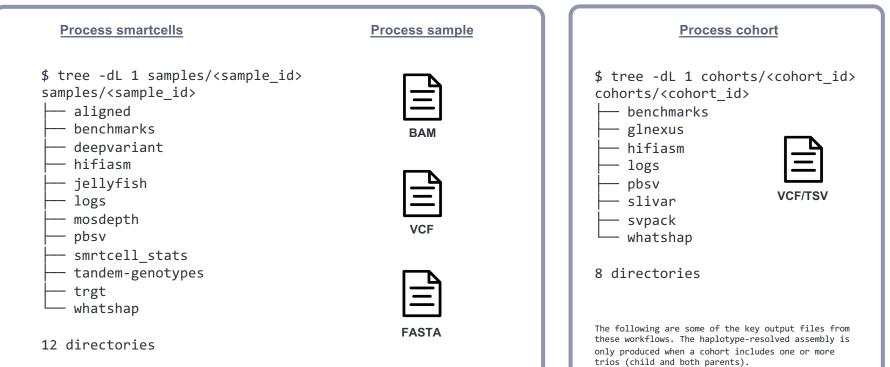
m44444_444444_4444444444.fastq.gz

Note: unaligned BAM and FASTQ filenames must be identifiable as HiFi reads

4. Run Analysis

- Run process workflow

This will process all samples located in smrtcells/ready. If you have samples in this folder that you don't want to process, move them to smrtcells/done, and make sure to re-activate the conda environment before submitting the job


sbatch workflow/process_smrtcells.sh

sbatch workflow/process_sample.sh <sample_id>

sbatch workflow/process_cohort.sh <cohort_id>

The following instructions are specific to a slurm cluster (i.e. sbatch). If not, just use bash command (i.e. sh workflow/process_smrtcells.sh).

Outputs

Annotated Small and Structural Variants

Small variant calls

Small variants and compound heterozygotes that are filtered based on **population frequency** and annotated with **cohort**

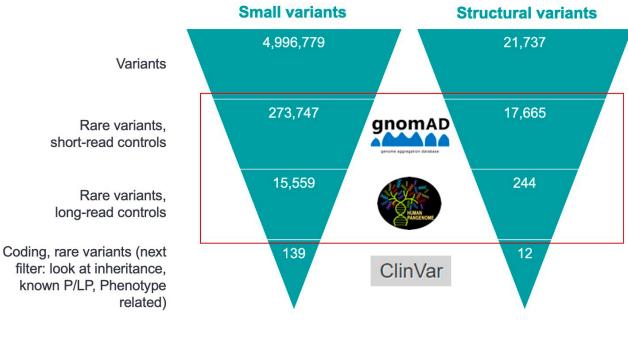
information, population AF, gene, functional impact, etc by slivar.

#mode	family_id	sample_id chr:	pos:ref:alt	genotype(:	gnomad_af	hprc_af	gnomad_nhc hpr	c_nhomalgnor	mad_ac hp	orc_ac	gene	highest_imp	depths(sam	pallele_balance(sample,dad,mom)	gene_impact_transcript	lof	clinvar	phrank
dominant	singleton-cohortid	HG002_15X chr1	1:679820:T:C	1,.,.	1.32E-05	-1	0	-1	1	-1	AL669831.3	49_non_codi	i 13,.,.	0.538462,.,.	AL669831.3/non_coding/			
recessive	singleton-cohortid	HG002_15X chr1	1:958181:G:A	2,.,.	7.07E-06	-1	0	-1	1	-1	NOC2L	46_intron	4,.,.	1,.,.	NOC2L/intron/;NOC2L/no	pLI=2.89e-29;oe_lof=1.0	291	
recessive	singleton-cohortid	HG002_15X chr1	L:1079763:A:T	2,.,.	0.000914434	-1	0	-1	131	-1			2,.,.	1,.,.				
dominant	singleton-cohortid	HG002_15X chr1	1:1519956:G:C	1,.,.	6.98E-06	-1	0	-1	1	-1	ATAD3A	46_intron	10,.,.	0.5,.,.	ATAD3A/intron/;ATAD3A/	pLI=4.09e-09;oe_lof=0.5	PONTOCEREBEL	0
dominant	singleton-cohortid	HG002_15X chr1	1:1645715:T:G	1,.,.	6.98E-06	-1	0	-1	1	-1	CDK11B	46_intron	8,.,.	0.375,.,.	CDK11B/intron/;CDK11B/i	pLI=6.48e-05;oe_lof=0.4	1842	
dominant	singleton-cohortid	HG002_15X chr1	1:2552666:G:C	1,.,.	2.79E-05	-1	0	-1	4	-1			10,.,.	0.5,.,.				
dominant	singleton-cohortid	HG002_15X chr1	1:2768845:G:C	1,.,.	-1	-1	-1	-1	-1	-1	TTC34	46_intron	6,.,.	0.5,.,.	TTC34/intron/	pLI=6.48e-11;oe_lof=1.0	828	
dominant	singleton-cohortid	HG002_15X chr1	1:3049839:A:C	1,.,.	2.10E-05	-1	0	-1	3	-1			11,.,.	0.363636,.,.				

singleton-cohortid.GRCh38.deepvariant.phased.slivar.tsv

Structural Variant calls

Structural variants that are filtered based on population frequency and annotated with cohort information, population AF,


gene, functional impact, etc by svpack.

#mode	family_id	sample_id	chr:pos:ref:algenotype(sa	ar SVTYPE	SVLEN	SVANN	CIPOS	MATEID	END	gene	highest_imp	depths(sam	callele_balan	(gene_impact lof	clinvar	phrank	
hetalt	singleton-col	HG002_15X	chr1:146124{ 1,.,.	DEL	-1548				146126409	NBPF10	29_sv:cds	10,.,.	0.3,.,.	NBPF10/sv:c pLI=4.	1e-85;oe_lof=2.00	58	
hetalt	singleton-col	HG002_15X	chr1:248633(1,.,.	BND			0,0	pbsv.BND.ch		OR2T11	29_sv:bnd	17,.,.	0.470588,.,.	OR2T11/sv:b pLI=5.	26e-07;oe_lof=1.54	417	
homalt	singleton-col	HG002_15X	chr10:68827{2,.,.	DEL	-335	TANDEM			68828184	STOX1	29_sv:cds	4,,.	1,.,.	STOX1/sv:cd pLI=1.4	44e-16 Preeclamps	sia	0
hetalt	singleton-col	HG002_15X	chr10:7974541,.,.	DUP	106984				79852414	NUTM2E	29_sv:cds	11,.,.	0.363636,.,.	NUTM2E/sv: pLI=1.	5e-05;oe_lof=1.65	2	
hetalt	singleton-col	HG002_15X	chr11:10167! 1,.,.	INS	9772				1016790	MUC6	29_sv:cds	8,.,.	0.375,.,.	MUC6/sv:cds pLI=2.	21e-39;oe_lof=0.7	9622	
hetalt	singleton-col	HG002_15X	chr11:55597(1,.,.	INV	69973				55667019	OR4C11;OR4	29_sv:cds	12,.,.	0.75,.,.	OR4C11/sv:c pLI=5.	6e-06;oe_lof=1.340	08;;pLI=0.017	/6;
hetalt	singleton-col	HG002_15X	chr11:56375{ 1,.,.	INS	7605				56375872	OR8U1	29_sv:cds	16,.,.	0.6875,.,.	OR8U1/sv:cc pLI=8.	73e-07;oe_lof=1.3	856	
hetalt	singleton-col	HG002_15X	chr11:93427(1,.,.	BND			0,1	pbsv.BND.ch		DEUP1	29_sv:bnd	9,.,.	0.333333,.,.	DEUP1/sv:bnd/			

singleton-cohortid.GRCh38.pbsv.svpack.tsv

Population Frequency Filtering Is Necessary for NGS Genetic Disease analysis/interpretation

Frequency database (gnomAD) and database like Clinvar, HGMD etc are the real power behind 3rd analysis. Without this data, interpretation would not fully extract benefit of increased SV detection

PacBio Current State: Using summary data from 40 long read genomes for freq. filtering – Building something with more power is what we propose

Filter for rare SNVs that impact a gene

- max_gnmad_af: 0.01
- max_hprc_af:0.01

Filter for rare SVs that impact a gene

- confident SV calls (PASS calls)
- SV calls not seen in population controls (rare variants)
- SV calls that impact a coding gene

PacBi

Human Pangenome Reference Consortium (HPRC) https://github.com/human-pangenomics/HPP Year1_Data Freeze v1.0

Downstream tools

SURVIVOR

SURVIVOR is a tool set for simulating/evaluating SVs, merging and comparing SVs within and among samples, and includes various methods to reformat or summarize SVs.

https://github.com/fritzsedlazeck/SURVIVOR

Structural variant comparison tool for VCFs

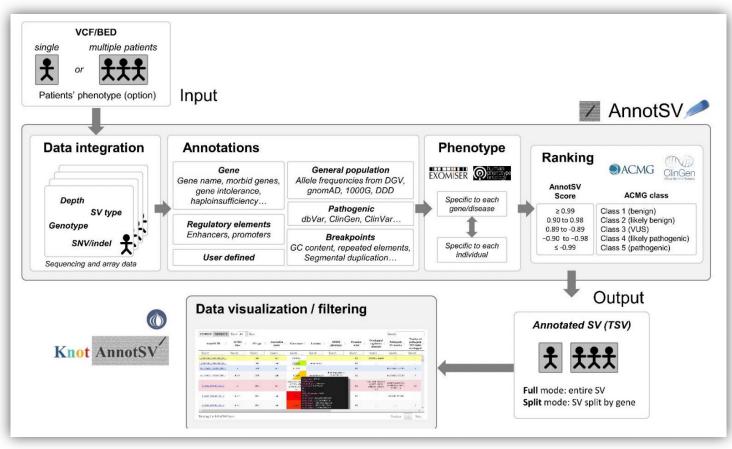
Given benchmark and comparsion sets of SVs, calculate the recall, precision, and f-measure.

https://github.com/spiralgenetics/truvari

Ribbon

Please cite our preprint on the BioRxiv: https://www.biorxiv.org/content/early/2016/10/20/082123

Ribbon is a long-read genome alignment visualizer By Maria Nattestad, sponsored by Pacific Biosciences


Ribbon is an interactive web visualization tool for viewing genomic alignments of short/long reads or assembled contigs to any reference genome.

https://github.com/MariaNattestad/ribbon

Integrative Genomics Viewer

http://software.broadinstitute.org/software/igv/

AnnotSV

PacBi

GENEYX

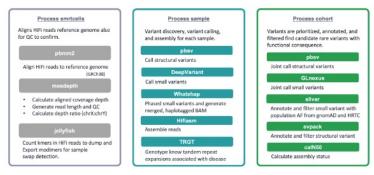
≡							Trial Version 1					Yenling Peng 👻 Help 👻								
	G	ት > 5	Subject:	TrioB	SNV (Yenli	> Analysis:	S-L220	8101744:	36 (> Ana	lyze	() Open		Assigne	ed	Info: S	Subject (Clinical VCF S	Samples	?
٢																				
囚					Locations: 7	Genes: 5)	Rece	essive HO	М		ve Compo	ound HET	Do	minant H	IET	Mitocho	ondria	More +		Q @
	Tools	RELEVANCE	PATHOGEN	NOTES	LOCATI	GENE	GENO	MIC AND	GENETIC	Z	ACM		ASSOCI	АТЕ М	VARIAI Q&R	DP2	IG Q > %	⇒ PHENO	CL M	CLINVAR
0	s and			Q	X:314783	DMD	TG	т	Q28	HET	LP	LP			Low	6, 2	25.00	70.58	8/9	
	Filter			ρ	1:1551903	MUC1	G	GCC		HET	LP	LP			Low	3, 9	75.00	2.49	2/9	
				ρ	1:1551906	MUC1	С	G		HET	LP	LP	•		Low	5, 11	68.75	2.49	2/9	
Ð				ρ	17:80090	CCDC40	С	CA	H10	HET	LP	LP			Med	7, 12	63.16	2.16	2/9	
				Q	17:80090	CCDC40	А	ACG	R10	HET	LP	LP			Med	7, 12	63.16	2.16	2/9	
ίΞ				ρ	10:26128	МУОЗА	G	А	W75	HET	LP	LP		•	High	11, 16	59.26	1.79	1/9	
ණ				ρ	10:171031	CUBN 🕑	СТ	С	K510	HET	LP	LP	•		Med	12, 8	40.00	1.45	1/9	

References

https://www.pacb.com/applications/whole-genome-sequencing/structural-variation/

- Application Brief: Structural Variant Detection Using Whole Genome Sequencing Best Practices
- Structural Variation Project Calculator
- Whitepaper
- <u>Video</u> (Tutorials and Conference Proceedings)
- Publications
- Example datasets: <u>https://github.com/PacificBiosciences/DevNet/wiki/Datasets</u>
- SMRT Link User Guide PDF (GUI)
- SMRT Tools <u>Reference Guide</u> PDF (CLI)
- pbsv online documentation
- minimap2 repository

PacBi


Using pb-human-wgs-workflow-snakemake on NCHC

解決Downloading and installing remote packages 問題

PB human WGS workflow snakemake

Recommend at least 80 cores and 1TB RAM for local execution. available cores.

Using pb-human-wgs-workflow-snakemake on NCHC

T3佇列名稱及詳細資訊

一般佇列

更新日期:2023/05/12

	佇列名稱	可用核心數	可執行時間	每位用	系統最多可同時	
	リテクリィロイ件	可用权心致	(hour)	可同時執行工作數	可排隊工作數	執行工作數
_	ctest	1~1120	0.5	2	6	80
	ct56	1~56	96	50	100	160
_	ct224	57~224	96	25	75	100
	ct560	225~560	96	15	45	100
	ct2k	561~2240	48	6	18	22
	ct8k	2241~8400	24	2	6	4

PacBi

Enabling full-featured genomes with HiFi sequencing

Comprehensive bioinformatics solutions

July 04, 2023 | PacBio BFX Wilson Cheng | Senior Bioinformatics Scientist, Field Applications, PacBio APAC

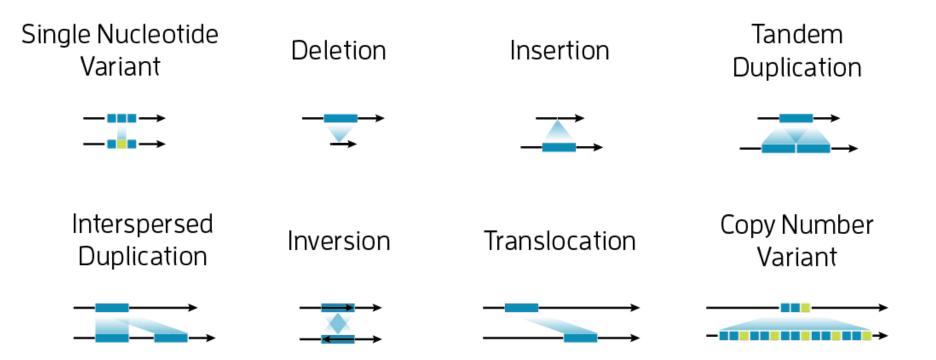
SMRT Link v12.0 GUI application enables userfriendly data management and analysis

Data Management

Runs

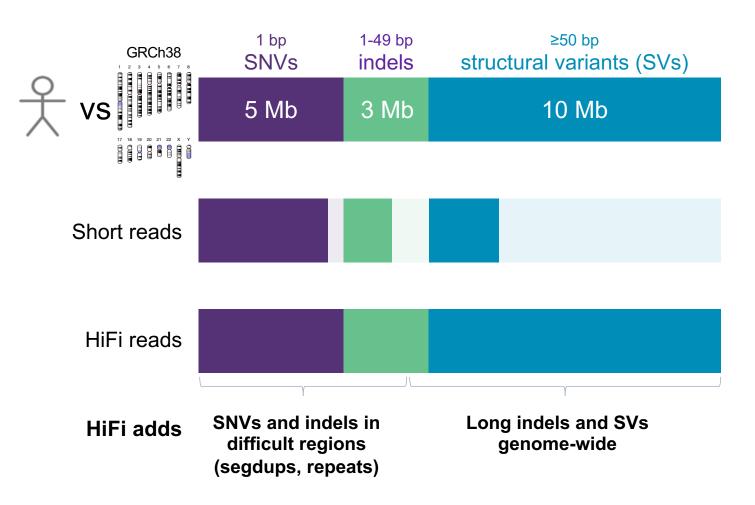
SMRT Analysis

- Revio systems
- Sequel IIe systems
- Sequel II systems

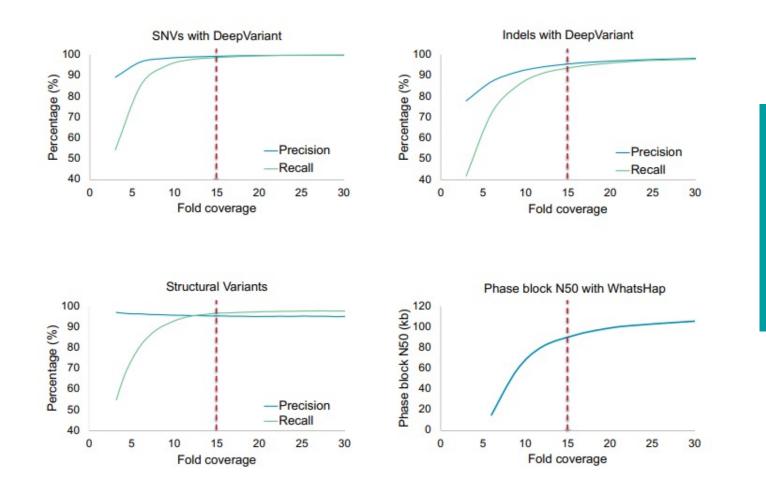

SMRT Link v12.0 Analysis Applications

Analysis Application Required

--Genome Assembly
HiFi Mapping
HiFiViral SARS-CoV-2 Analysis
Iso-Seq Analysis
Microbial Genome Analysis
Read Segmentation and Single-Cell Iso-Seq
Single-Cell Iso-Seq
Structural Variant Calling
Variant Calling


Data Utility Required	
	\$
5mC CpG Detection	
Demultiplex Barcodes	
Export Reads	
Mark PCR Duplicates	
Read Segmentation	
Trim Ultra-Low Adapters	
Undo Demultiplexing	

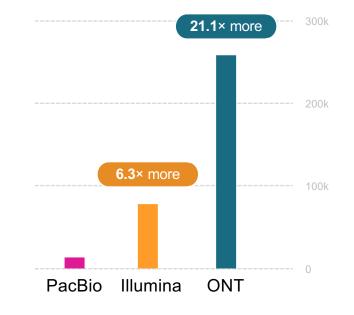
Types of variants in a genome



HiFi reads provide a comprehensive view of the genome

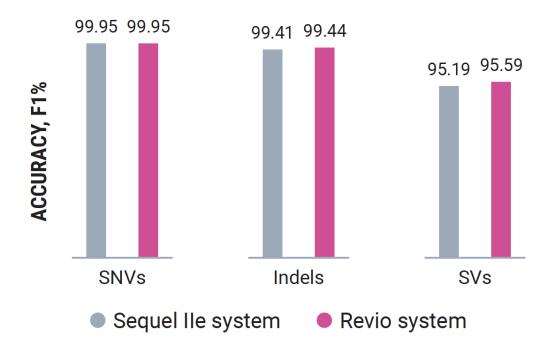
15-fold HiFi read coverage recommendation for comprehensive variant detection applications

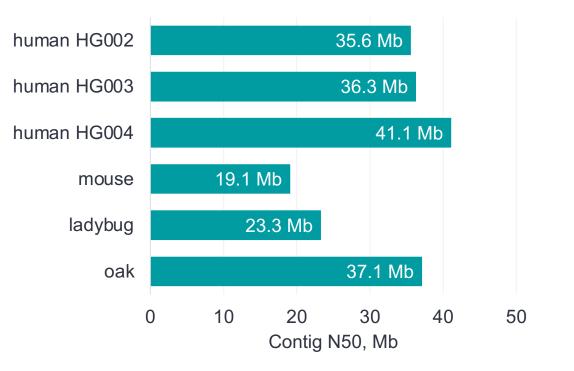
15-fold HiFi (≥Q20) Coverage [2 SMRT Cells 8M for a 3 Gb genome] provides a good trade-off between cost and results


HiFi reads outperform other approaches for variant detection

precisionFDA Truth Challenge V2 & Genome in a Bottle SV Benchmark v0.6

HiFi reads improve detection of


- ✓ Structural variants
- ✓ Repeat expansions
- ✓ SNVs and indels in difficult-to-map regions


Total errors (SNV + indel + SV)

Revio system has exceptional application performance

Revio system matches precisionFDA-winning variant calling performance of Sequel IIe

Revio system has **excellent genome assembly** performance

GETTING DOWN TO THE BASIC OF SEQUENCING ACCURACY

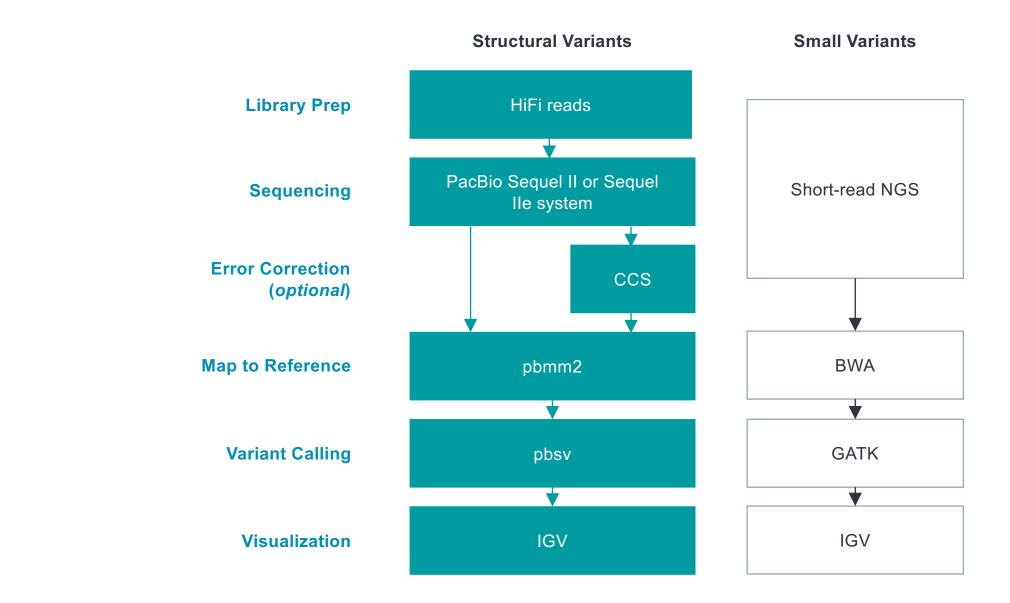
Precision medicine						
also needs to be						
accurate						
medicine						

Platform Comparison PrecisionFDA Truth Challenge results (HG0003)

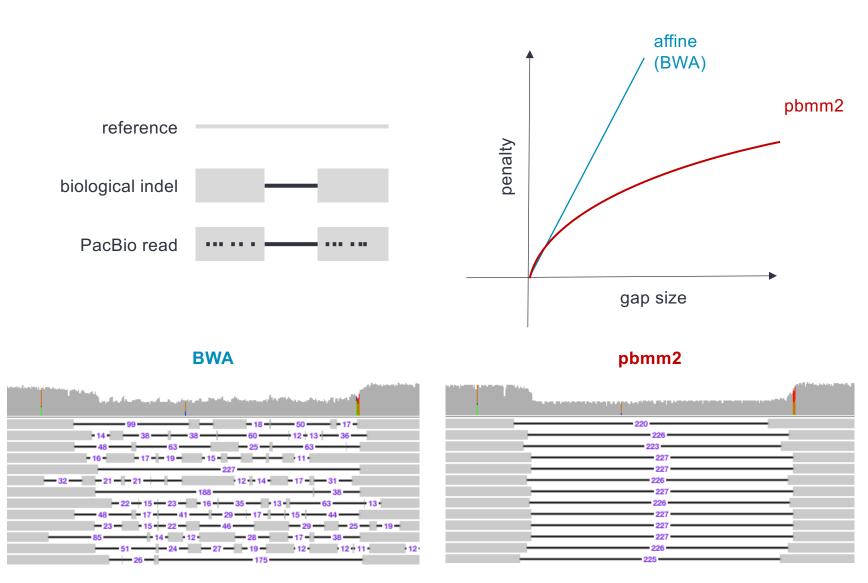
SNV FN

SNV FP

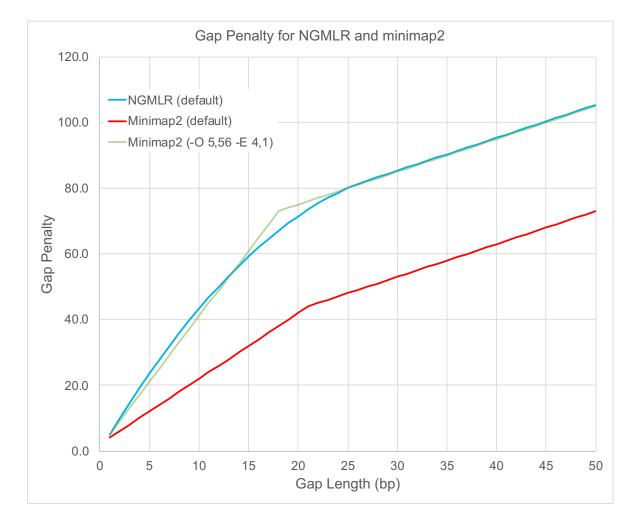
	INDEL SV FN	FN INDEL F SV FP	Р
PacBio DeepVariant + pbsv	3 total errors 🙀		
Illumina DeepVariant + Manta	2.7× more		
Illumina GATK 4 + Manta	5.8×		
ONT PEPPER-DeepVariant + Sniffles			28.3×
0	100,000	200,000 : Total errors	300,000 400,000


Algorithm deep dive

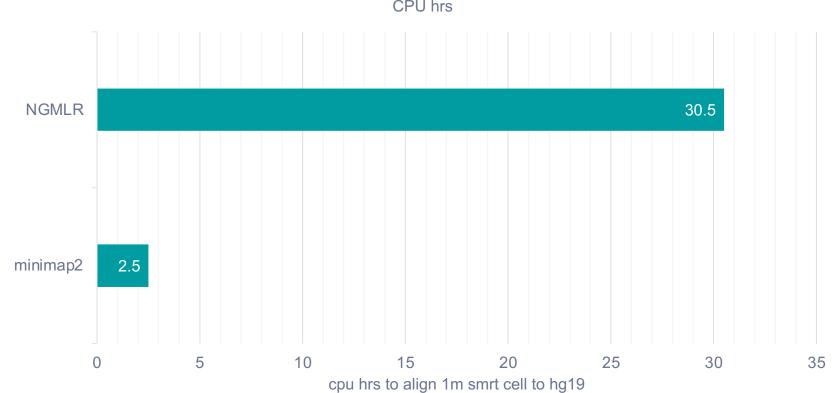
pbsv


Workflow to detect variants

Map to reference


pbmm2

Map to reference: Why pbmm2?

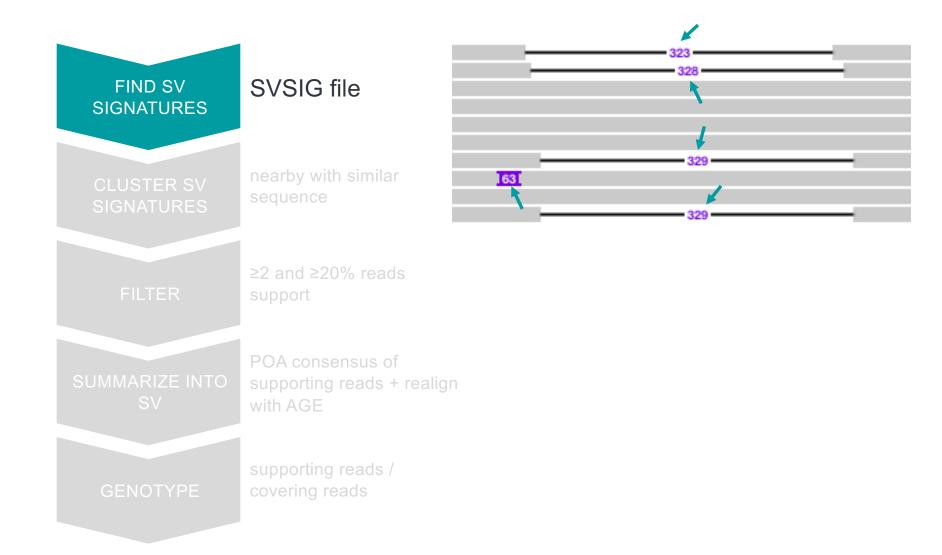

NGMLR (convex) vs pbmm2 / minimap2 (piecewise linear)

PacBi

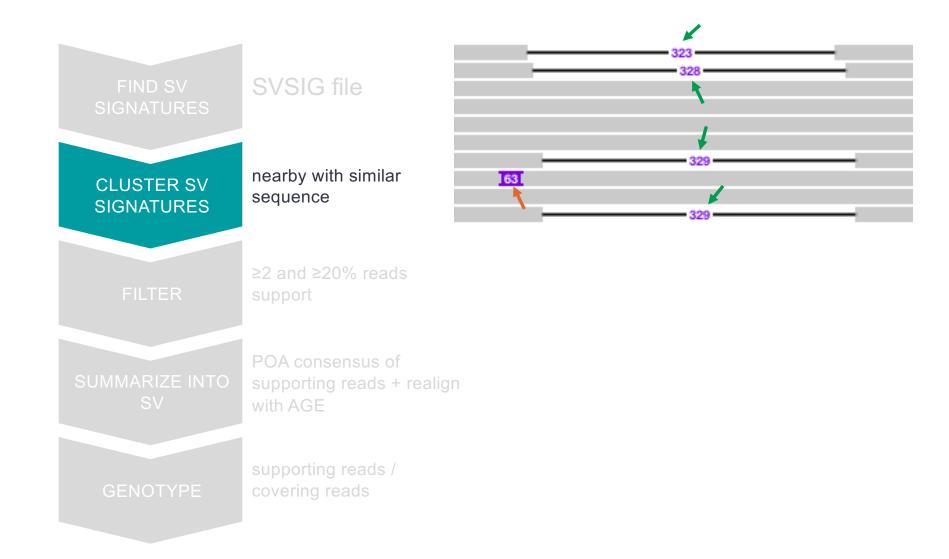
Map to reference: Why pbmm2?

Improved run time

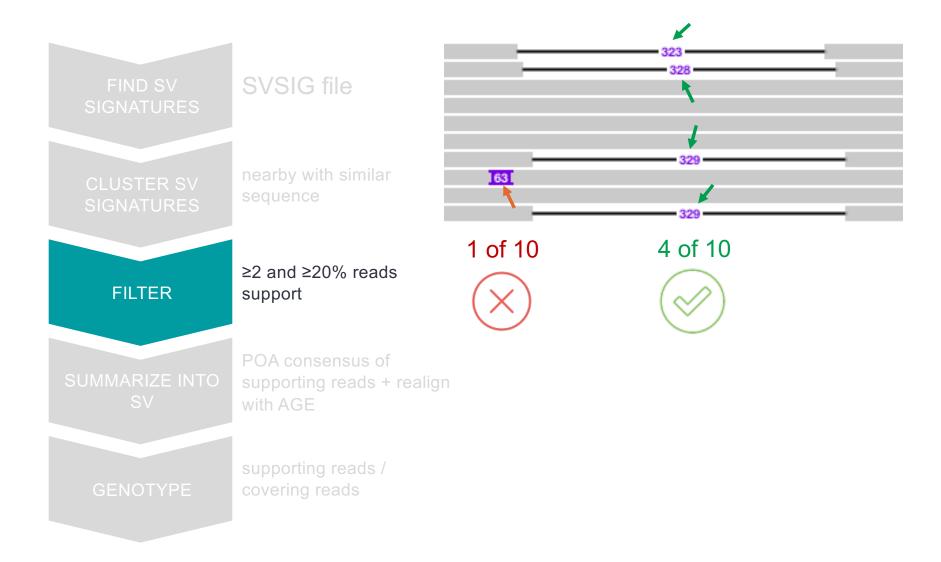
CPU hrs

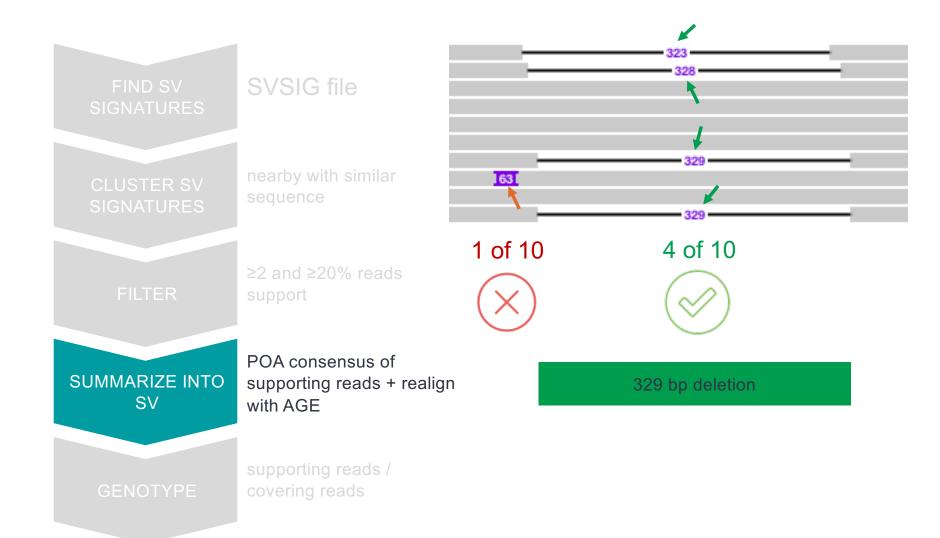


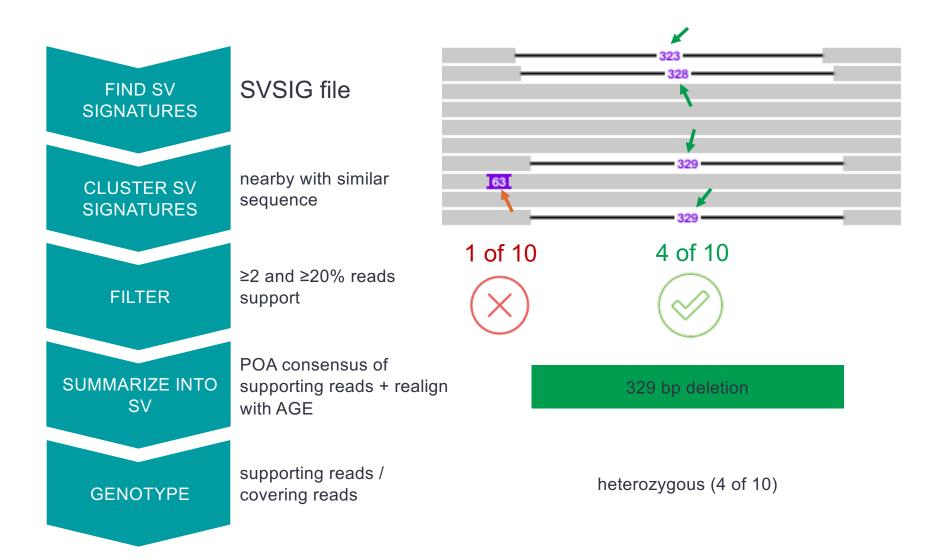
Variant calling

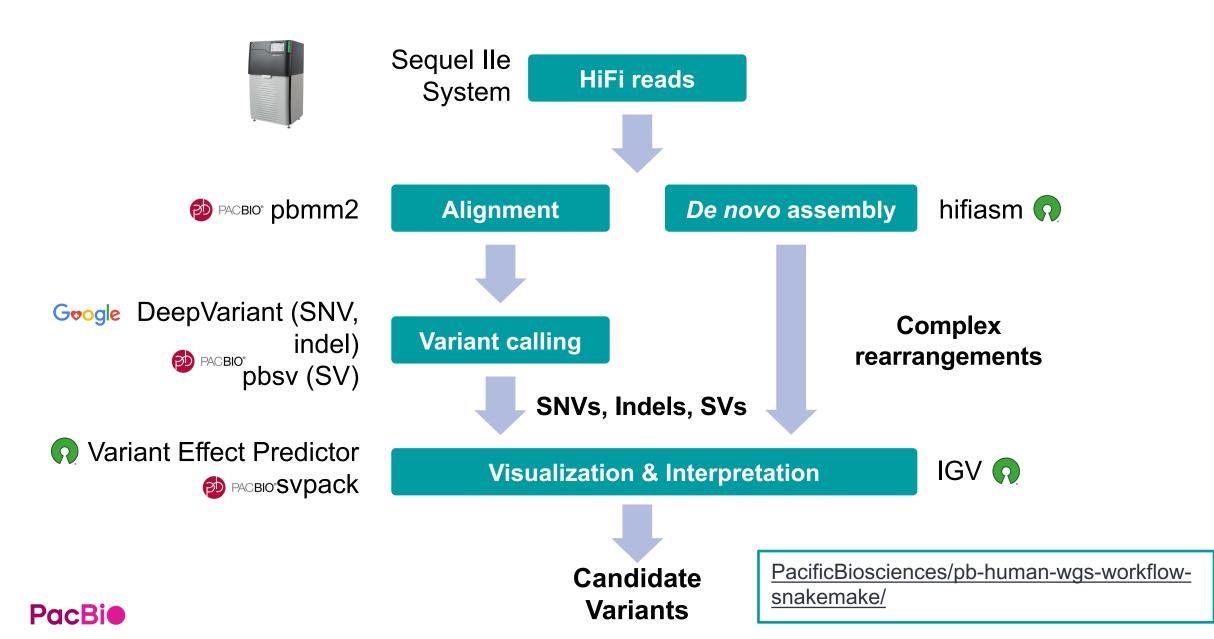

Workflow

Find sv signatures	Cluster sv signatures	Filter	Summarize into sv	Genotype
SVSIG file	nearby with similar sequence		POA consensus of supporting reads + realign with AGE	supporting reads / covering reads


Variant calling







New workflows

Tools in pbbioconda

Workflow for WGS data analysis

PB human WGS workflow snakemake

Process smrtcells Aligns HiFi reads reference genome also for QC to confirm. pbmm2 Align HiFi reads to reference genome (GRCh38) mosdepth Calculate aligned coverage depth Generate read length and QC Calculate depth ratio (chrX:chrY) jellyfish Count kmers in HiFi reads to dump and Export modimers for sample swap detection.

Process sample

Variant discovery, variant calling, and assembly for each sample.

pbsv

Call structural variants

DeepVariant

Call small variants

Whatshap

Phased small variants and generate merged, haplotagged BAM

Hifiasm

Assemble reads

Trgt

Genotype tandem repeat

pb-cpg-tools

Gerneate list of CpG/5mC sites and modification probabilities

Process cohort

Variants are prioritized, annotated, and filtered find candidate rare variants with functional consequence.

pbsv

Joint call structural variants

GLnexus

Joint call small variants

slivar

Annotate and filter small variant with population AF from gnomAD and HRTC

svpack

Annotate and filter structural variant

calN50

Calculate assembly status

PacBi

The Consortium for long-read sequencing variant frequency database

Mission: Establish database of long read specific variants to fully realize the utility of long-read sequencing in human health applications.

Membership: Founded by leading institutions and experts with significant interest and experience in population scale variant frequency databases

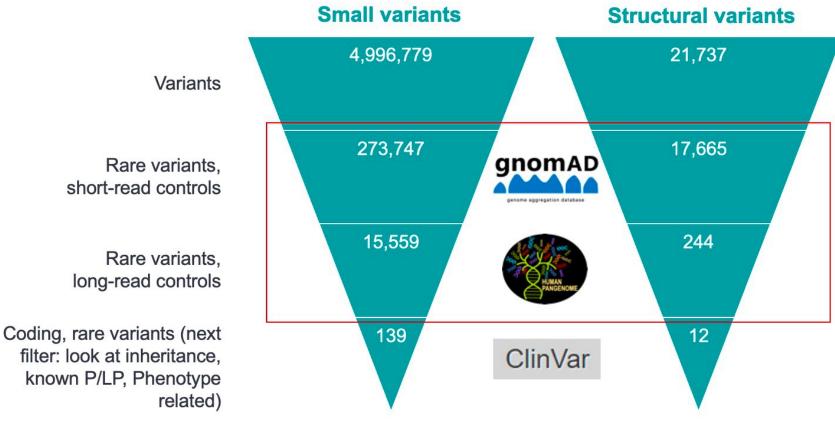
Goals:

- Establish a globally accessible long-read variant database (>2,000 genomes by end 2023) to be hosted in NHGRI AnVIL (Analysis Visualization and Informatics Lab-space)
- Incorporate standardized data and pipeline required to normalize heterogeneous data sets from contributors
- Write a manuscript describing analysis of variant data and database can be used to screen potentially pathogenic variants in clinical samples

The International Children Hospitals' Consortium to Increase Diagnostic Yield in Rare and Inherited Diseases (RID)

Mission: <u>Generate evidence</u> and <u>establish clinically-informed best practices</u> on the utility of HiFi sequencing technology to potentially increase diagnostic yield of unsolved rare and inherited diseases.

Membership: Founded by leading institutions and children's hospitals with significant interest and experience in [evaluation / diagnosis] of rare and inherited diseases.


Goals:

- Establish a globally accessible variant database of HiFi WGS genomes in RID (at least 2,500 genomes by end 2023)
- Publish a series of clinically-informed best practices in adoption of HiFi WGS in RID
- Provide access to testing facilities offering HiFi long-read WGS

PacBi

Population Frequency Filtering Is Necessary for NGS Genetic Disease analysis/interpretation

Frequency database (gnomAD) and database like Clinvar, HGMD etc are the real power behind 3rd analysis. Without this data, interpretation would not fully extract benefit of increased SV detection

PacBio Current State: Using summary data from 40 long read genomes for freq. filtering – Building something with more power is what we propose

Filter for rare SNVs that impact a gene

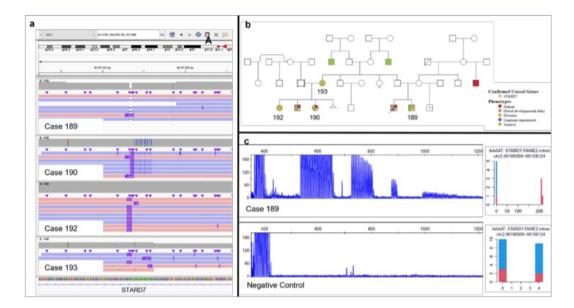
- max_gnmad_af: 0.01
- max_hprc_af:0.01

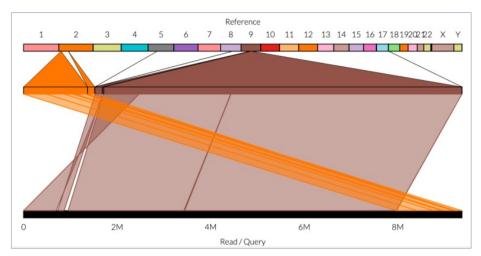
Filter for rare SVs that impact a gene

- confident SV calls (PASS calls)
- SV calls not seen in population controls (rare variants)
- SV calls that impact a coding gene

Human Pangenome Reference Consortium (HPRC) https://github.com/human-pangenomics/HPP Year1 Data Freeze v1.0

Increased explanation rate through PacBio HiFi WGS


Genomic answers for children: Dynamic analyses of >1000 pediatric rare disease genomes


Ana SA Cohen, Emily G Farrow, Ahmed T Abdelmoity, Joseph T Alaimo, Shivarajan M Amudhavalli, John T Anderson, Lalit Bansal, Lauren Bartik, Primo Baybayan, Bradley Belden, Courtney D Berrios, Rebecca L Biswell, Pawel Buczkowicz, Orion Buske, Shreyasee Chakraborty, Warren A Cheung, Keith A Coffman, Ashley M Cooper, Laura A Cross, Thomas Curran, Thuy Tien T Dang, Mary M Elfrink, Kendra L Engleman, Erin D Fecske, Cynthia Fieser, Keely Fitzgerald, Emily A Fleming, Randi N Gadea, Jennifer L Gannon, Rose N Gelineau-Morel, Margaret Gibson, Jeffrey Goldstein, Elin Grundberg, Kelsee Halpin, Brian S Harvey, Bryce A Heese, Wendy Hein, Suzanne M Herd, Susan S Hughes, Mohammed Ilyas, Jill Jacobson, Janda L Jenkins, Shao Jiang, Jeffrey J Johnston, Kathryn Keeler, Jonas Korlach, Jennifer Kussmann, Christine Lambert, Caitlin Lawson, Jean-Baptiste Le Pichon, Steve Leeder, Vicki C Little, Daniel A Louiselle, Michael Lypka, Brittany D McDonald, Neil Miller, Ann Modrcin, Annapoorna Nair, Shelby H Neal, Christopher M Oermann, Donna M Pacicca, Kailash Pawar, Nyshele L Posey, Nigel Price, Laura MB Puckett, Julio F Quezada, Nikita Raje, William J Rowell, Eric T Rush, Venkatesh Sampath, Carol J Saunders, Caitlin Schwager, Richard M Schwend, Elizabeth Shaffer, Craig Smail, Sarah Soden, Meghan E Strenk, Bonnie R Sullivan, Brooke R Sweeney, Jade B Tam-Williams, Adam M Walter, Holly Welsh, Aaron M Wenger, Laurel K Willig, Yun Yan, Scott T Younger, Dihong Zhou, Tricia N Zion, Isabelle Thiffault, Tomi Pastinen

- 13% of new explanations in previously unsolved cases by incorporating SVs
- HiFi WGS over srWGS:

PacBi

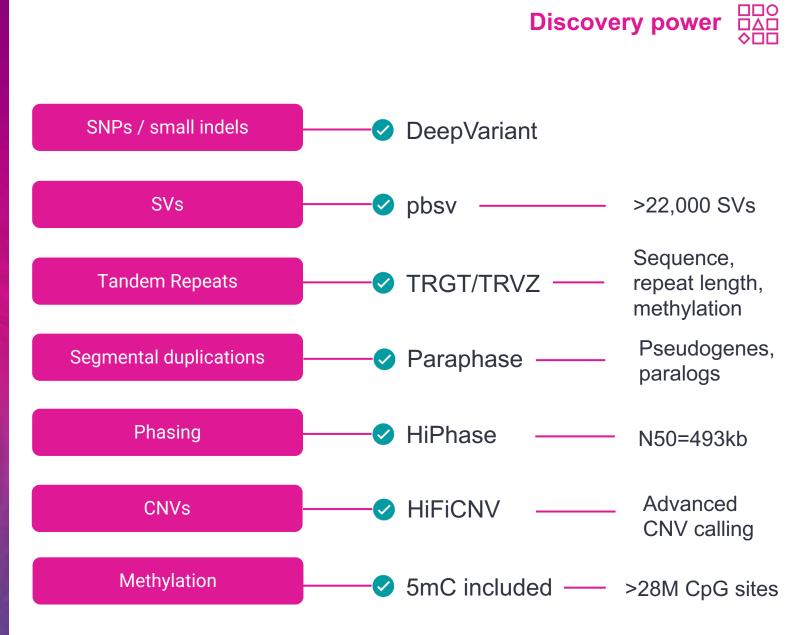
- 2x more SVs
- 4x more rare transmitted SVs
- 5% (~200,000 additional) SNVs
- Long-range phasing (~400 kb)

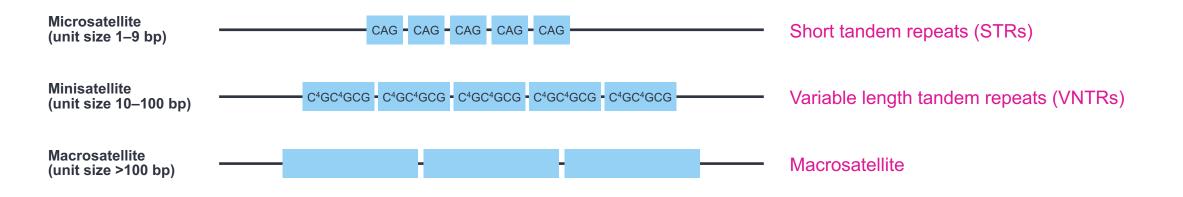
Phased Assembly Variant Caller (pav)

PAV is a tool for discovering variation using assembled genomes aligned to a reference.

- It is designed explicitly for phased assemblies, however, it can be used for squashed assemblies by providing an empty FASTA for the second haplotype.
- PAV was developed for the Human Genome Structural Variation Consortium (HGSVC)

Science	Current Issue	First release papers	Archive	About 🗸	Submi	it manuscript				
HOME > SCIENCE > VOL. 372, NO. 6537 > HA	APLOTYPE-RESOLVED DIVERSE	HUMAN GENOMES AI	ND INTEGRA	TED ANALYS	IS OF					
RESEARCH ARTICLE			f	¥ in	6 6	×				
Haplotype-resolved diverse human genomes and inte- grated analysis of structural variation										
PETER EBERT (), PETER A. AUDANO (), QIHUI ZH ARVIS SULOVARI (), JANA EBLER (), WEICHEN ZI			0000	MARC JAN B	0	,				
SCIENCE - 25 Feb 2021 - Vol 372, Issue 6537 - D	OI: 10.1126/science.abf7117									


Computational tools drive discovery


PacBi

Compute power

Google DeepConsensus and more on board

Tandem repeats play a key role in human health and disease

Most abundant class of variation in the human genome¹

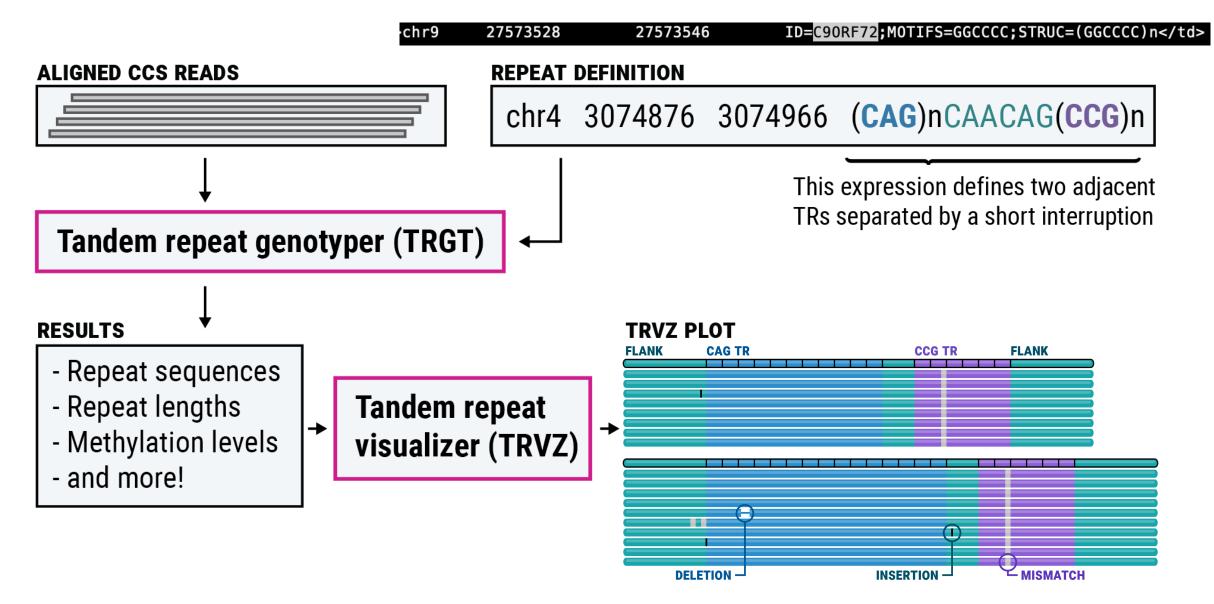
- > 1M tandem repeats in the human genome
- > 10 higher mutation rate than any other variant class

Known to cause disease

- >50 repeat expansion disorders caused by STRs¹
- Several VNTRs linked to diseases like Alzheimer's, Autism, Epilepsy, ALS and others^{2,3}

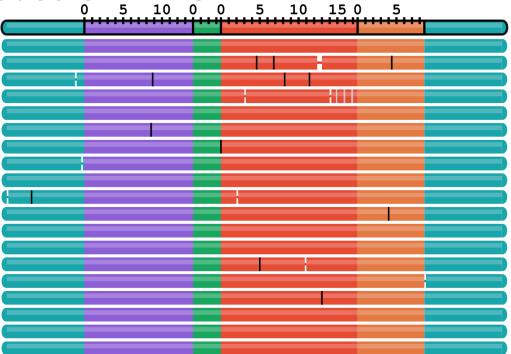
Accurate characterization is essential to diagnose disease¹

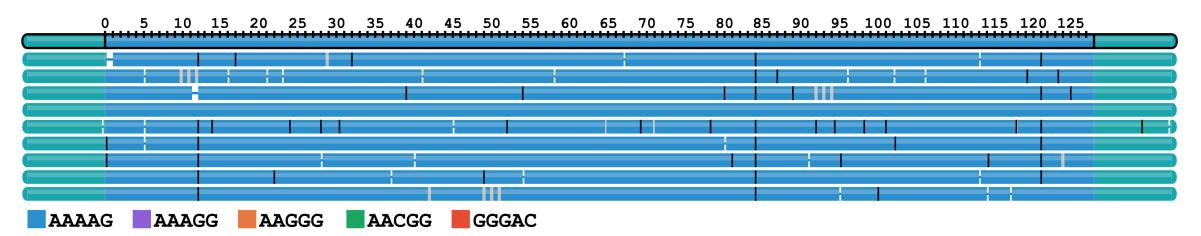
- Accurate repeat count
- Identification of medically relevant interruption sequences
- Methylation status


Resolving the unsolved: Comprehensive assessment of tandem repeats at scale

Egor Dolzhenko, Adam English, Harriet Dashnow, Guilherme De Sena Brandine, Tom Mokveld,
 William J. Rowell, Caitlin Karniski, Zev Kronenberg, Matt C. Danzi, Warren Cheung, Chengpeng Bi,
 Emily Farrow, Aaron Wenger, Verónica Martínez-Cerdeño, Trevor D Bartley, Peng Jin, David Nelson,
 Stephan Zuchner, Tomi Pastinen, Aaron R. Quinlan, Fritz J. Sedlazeck, Michael A Eberle
 doi: https://doi.org/10.1101/2023.05.12.540470

Depienne et. al (2021) 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? AJHG,108(5): 764-785; 2) Ebbert et. Al (2020)
 Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight. Genome Biol. 20(1):97
 Raybould (2021) Searching the dark genome for Alzheimer's disease risk variants. Brain Sci. 11(3):332


Mapping of *HTT* repeat expansion with TRGT and visualizing with TRVZ



A polymorphic repeat whose expansions cause CANVAS

- *RFC1* repeat is polymorphic in length and sequence composition
- Biallelic *RFC1* expansions consisting of AAGGG motif cause cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS)
- Here are *RFC1* repeat alleles in HG00733:

HiFiCNV – calling copy number variants from HiFi datasets

Many variant types of clinical research interest (*i.e.*, human genomics) are covered by existing tools for HiFi data.

- Small variants DeepVariant; SNV and indel
- Structural Variants (SVs) pbsv; deletion, insertion, and inversion
- Short Tandem Repeats (STRs) TRGT
- Targeted tools Paraphase, Pangu

HiFiCNV aims to call copy number variants (CNVs)

- Large scale copy number gains and losses (typically >100 kb)
- Frequently caused by segmental duplications and/or sequence homology
- Main goal: create a tool that can leverage read-depth signature from HiFi data to detect CNVs

HiFiCNV outputs – variant calls and IGV visuals

VCF v4.2

- Contains the variant calls (deviations from expected CN), usually < 50 PASS calls
- TARGET_SIZE filter if event < 100 kb
- QUAL based on next-most-likely CN state

Copy number track

- Reports CN from HMM
- Deviations from expected are in VCF

Depth track

• One entry per bin

HiFiCNV performance

Evaluated on clinically-relevant CNVs from Gross *et al.*, 2019

- 17 samples
- 25 clinical events
 - Some are small (<100 kb)
 - Large gains and losses
 - Whole chromosome triplication

HiFiCNV accurate calls large CNVs

- 100% recall of all large (>100 kb) CNVs
- 80% recall for whole test set
- Complements pbsv for 100% recall

Metric	Value
HiFiCNV recall	80% (20 / 25)
HiFiCNV + pbsv recall	100% (25 / 25)
HiFiCNV base recall	97.43%
HiFiCNV base precision	58.52%

Genetics in Medicine Volume 21, Issue 5, May 2019, Pages 1121-1130

Article

Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease

Andrew M. Gross PhD¹, Subramanian S. Ajay PhD¹, Vani Rajan MS¹, Carolyn Brown CGC¹, Krista Bluske PhD¹, Nicole J. Burns MS¹, Aditi Chawla PhD¹, Alison J. Coffey PhD¹, Alka Malhotra PhD¹, Alicia Scocchia MS CGC¹, Erin Thorpe MS CGC¹, Natasa Dzidic MS², Karine Hovanes PhD FACMG², Trilochan Sahoo MD FACMG², Egor Dolzhenko PhD¹, Bnyan Lajoie PhD¹, Amirah Khouzam MS CGC³, Shimul Chowdhury PhD FACMG⁴, John Belmont MD PhD¹, Eric Roller PhD¹...Ryan J. Taft PhD¹ K

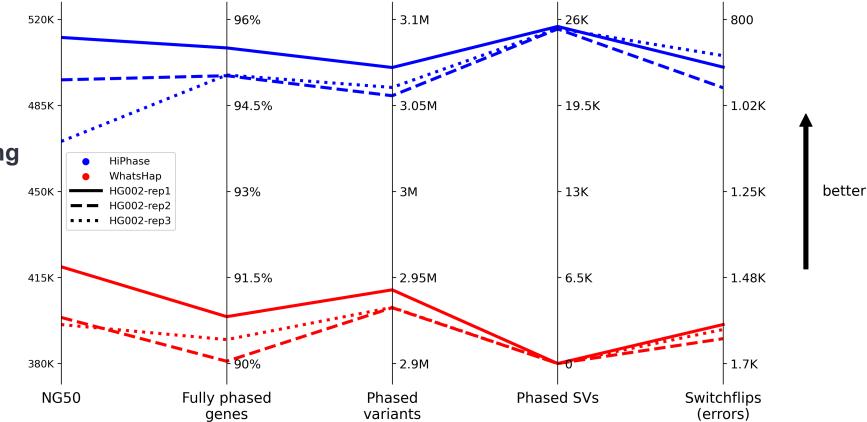
HiPhase – phasing SNVs, indels, and structural variants from HiFi datasets

Current phasing approaches are limited

- WhatsHap is most prominent tool for HiFi read-backed phasing
- Only phases small variants (SNVs and indels)
- Leaves ~10% of genes with multiple phase blocks
- Downsamples the data to 15x by default
- Does not span homozygous deletions or reference gaps
- Practical issues: hard to parallelize

HiPhase aims to phase all variant types called from HiFi reads

- Jointly phases SNVs, indels, and structural variants (insertions and deletions)
- No downsampling
- Includes logic to span coverage gaps with supplemental mappings
- Quality of life additions: innate multithreading, simultaneous statistics gathering and haplotagging


HiPhase performance

Datasets

- Three HG002 replicates
- Revio system

HiPhase improves over existing approach

- Per-replicate averages
- Block NG50: 493 kb
- Phased variants: 3.1M
- Phased SVs: 25K
- Fully phased genes: 95.2%
- Errors (switchflips): 933

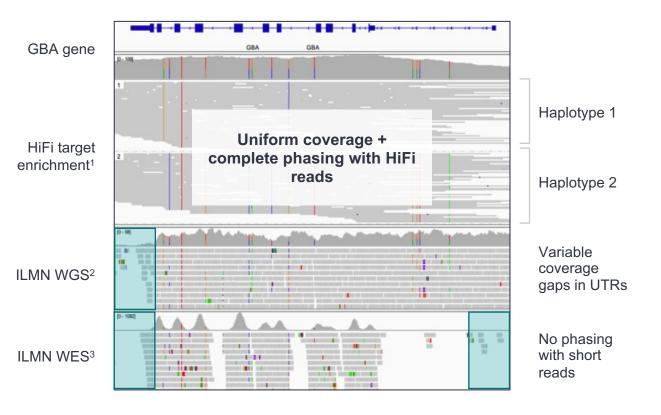
Datasets: https://downloads.pacbcloud.com/public/revio/2022Q4/

HiPhase – example gap spanning

Grouped by haplotype ID Colored by phase block id

HiFi target enrichment

Twist + PacBio partner to deliver off-the-shelf long-read panels



Targeted HiFi sequencing at scale

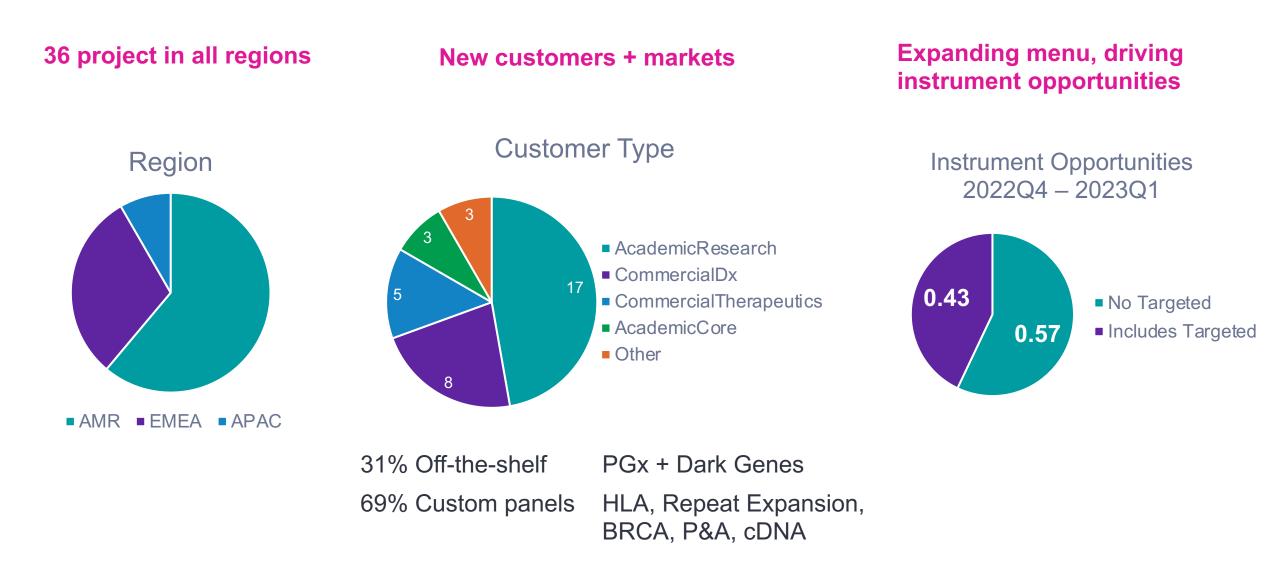
Initial product portfolio focuses on challenging genes

Twist Alliance panel	Long Read PGx	Dark Genes
Number of genes	49 + mtDNA ⁴	389
Panel size	2 Mb	22 Mb
Samples/Sequel IIe SMRT Cell 8M	24	4
Sample/Revio SMRT Cell	72	12

Full gene coverage of medically relevant genes

Available for sale now

https://www.twistbioscience.com/products/ngs/Long-Read-Sequencing-Panel

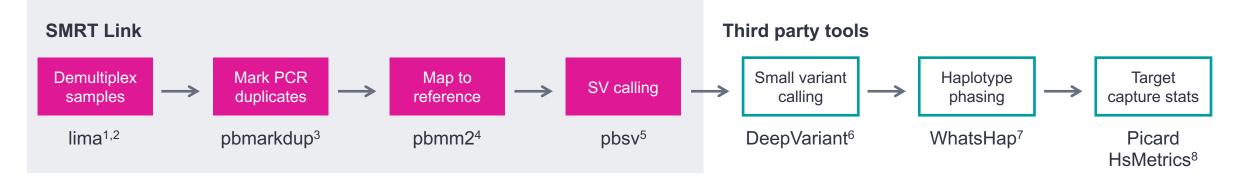

1. BCM-HGSC Twist Alliance panel, HG001 Sequel Ile system

2. https://www.biorxiv.org/content/10.1101/2020.12.11.422022v1.full (HG001 30x PCR free NovaSeq)

3. https://www.biorxiv.org/content/10.1101/2020.12.11.422022v1.full (HG001 75x TruSeq NovaSeq)

4. mtDNA spike-in probes available from Twist

Enthusiasm for Twist Panels since launch of custom panels last year



Bioinformatics analysis recommendations

2. GitHub command line pipeline delivers phased VCF, QC stats + plots for advanced users

C Se	arch or jump t	o	/ Pull reque	sts Issues N	Marketplace	Explore
A Pacific	cBioscienc	es / HiFiTargetE	nrichment	Private		
<> Code	 Issues 	ໃງ Pull requests	▹ Actions	🗄 Projects	() Security	🗠 Insights

<u>https://github.com/PacificBiosciences/barcoding</u>
 <u>Twist Barcode download: https://www.pacb.com/wp-content/uploads/Twist_Universal_Adapter_System_384.FASTA_.zip</u>
 <u>https://github.com/PacificBiosciences/pbmarkdup</u>
 <u>https://github.com/PacificBiosciences/pbmarkdup</u>

- 5. https://github.com/PacificBiosciences/pbsv
- 6. <u>https://github.com/google/deepvariant</u>
- <u>https://github.com/WhatsHap/WhatsHap</u>
- https://snakemake-wrappers.readthedocs.io/en/stable/wrappers/picard/collecthsmetrics.html

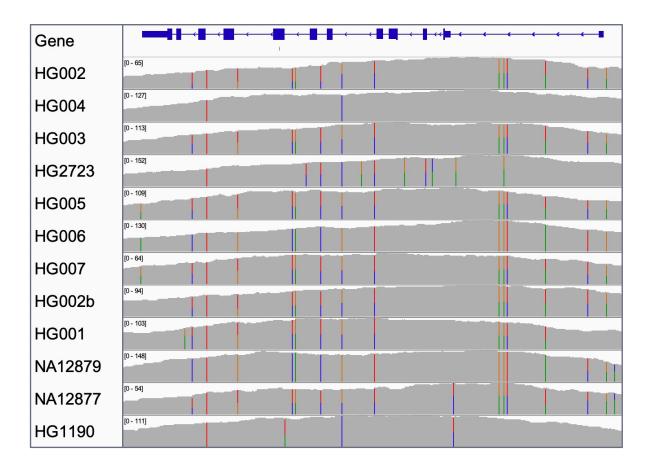
Twist Alliance Dark Genes panel

- Comprehensive 22 Mb panel: full gene coverage for 389 challenging medically-relevant genes²
- Uncover genes in "NGS dead zone" that are difficult to sequence or map with short reads^{2,3}
- Genes with pseudogenes, paralogs, repetitive sequence, or contained within segmental duplications.

Panel content^{4.5}

A4GALT. ABCG8. ABO. ABR. ADAMTS10. ADAMTSL2. AFP. AGL. AGRN. ALOXE3. ANKRD11. ANO7. APOBEC1. APOBEC3H. APOC1. APOC2. APOC4. ARHGEF10. ASIP, ATPAF2, AXIN1, B3GAT3, BAX, BFSP2, BLOC1S3, BRAF, BSG, BTRC, C1R, C3, CABIN1, CALR3, CANT1, CASP10, CBR3, CBS, CCL3L1, CD247, CD320, CD4, CD55, CDH15, CDH17, CEL, CFC1, CFC1B, CFD, CFHR1, CFHR3, CHL1, CHMP1A, CHRNA4, CLCN7, CLIP2, CNR2, COL18A1, COL6A1, COL6A2, COX14, COX6B1, CR1. CREB3L3. CRYAA. CTDP1. CYB5R3. CYP2D6. CYP2G1P. CYP4F12. CYP4F3. D2HGDH. DAXX. DAZL. DCLRE1C. DEAF1. DGCR6. DIP2C. DLGAP2. DMPK. DNMT3L, DOK7, DPP6, DPY19L2, DRD4, DSPP, DUX4, DUX4L1, ECHS1, EEF1A2, EHMT1, EIF2B5, EIF4E, ELANE, ENO3, ESPN, ESRRA, ETFB, ETHE1, EXTL2, F7, FAM20C, FAT1, FCGR1A, FCGR2B, FCGR3A, FGF3, FGFRL1, FKBP8, FLAD1, FLG, FLT4, FOXN1, FSCN2, FTCD, FUT1, FUT3, FXN, G6PC3, GAK, GALNT9, GALR1, GALT, GBA, GCGR, GCSH, GDF3, GIP, GIPC3, GNPTG, GOLGA3, GP1BA, GP6, GPI, GPIHBP1, GRIN1, GRK1, GSTM1, GTF2I, GTF2IRD2, GUSB, GYPA, GYPB, GYPE, H19, HBG1, HBM, HCN2, HCN3, HES7, HLA-B, HLA-DQB1, HLA-DRB1, HMGCL, HMX1, HNF1A, HOMER2, HOXB8, HPD, HSD11B2, HYAL1, HYDIN, IFITM3, IFNL3, IGHA1, IGHG1, IGHG2, IGHM, IGHV3-21, IGKC, IGKV1-5, IKBKB, IKZF1, IMPA1, INPP5D, INPP5E, INSL3, INSR, JAG2, KANSL1, KATNAL2, KCNE1, KCNJ18, KCNV2, KDM2B, KIR2DL1, KIR2DL3, KIR3DL1, KISS1, KISS1R, KLF11, KLF14, KLK4, KMT2C, KNG1, KRTAP1-1, LAMB1, LBR, LCE3B, LHFPL5, LIPN, LIX1, LMF1, LMNB2, LPA, LRIG2, LRPAP1, LZTFL1, MAFA, MAN1B1, MAP2K3, MARVELD2, MASP2, MBOAT7, MC1R, MDK, MEST, MLC1, MLPH, MOGS, MPG, MRC1, MST1R, MUC1, MUC16, MUC3A, MUC4, MUC5B, MUSK, MYO9B, MYOT, MYT1, NACA, NAIP, NAPRT, NBEAP1, NCF1, NCF1C, NCR3, NDUFA6, NDUFAF1, NDUFB1, NDUFV3, NFKBIL1, NLRP12, NLRP2, NLRP7, NOD1, NOTCH2, NPM1, NPPA, NSMF, NUTM2B, NUTM2D, OCLN, OPRL1, OR12D2, OR4F5, OR51A2, ORC6, P2RX2, P2RX5, PADI4, PAPSS2, PCBP1, PCCB, PCDHA10, PCMT1, PDE4DIP, PDE6B, PDLIM3, PDPK1, PDSS1, PEX5, PGAM5, PHKG2, PIGV, PKD1, PKN3, PLA2G10, PLTP, PMS2, PNKP, POLG2, PPIA, PPIP5K1, PRG4, PRKCG, PRODH, PROZ, PRSS2, PSPH, PTEN, PTK6, PTPRC, PTPRN2, PTPRQ, PXDN, RFX2, RGPD3, RHCE, RHOA, RNF212, RNF213, RPIA, RPL22, RPN1, RPS17, SAR1B, SBDS, SBK3, SDHA, SEC63, SEMG1, SERPINF2, SH2B1, SHANK2, SHANK3, SIGLEC16, SIRT3, SLC17A5, SLC22A1, SLC22A12, SLC26A9, SLC27A4, SLC27A5, SLC29A4, SLC5A11, SLC6A18, SLC6A3, SMG1, SMN1, SMN2, SMOC2, SNORD64, SNTG2, SOHLH1, SPATA31C1, SPI1, SPRN, SRGAP2, SRR, SSTR5, STK11, STXBP2, SULT1A1, SUZ12, TAPBP, TAS2R45, TAS2R46, TBXA2R, TCF3, TERT, TFPT, THBS2, TJP2, TM4SF19, TMC6, TMEM114, TNNI3, TNNT1, TNNT3, TPCN2, TPO, TRAPPC10, TRBV9, TRMT1, TRPM4, TTC37, TTLL1, TUBGCP6, TWIST2, TYK2, TYMS, U2AF1, UGT2A1, UGT2A2, UGT2B17, UGT2B28, UNKL, USP8, UVSSA, VANGL1, VKORC1, VPS53, ZAN, ZNF141, ZNF407, ZNF419, ZNF469, ZNF479

- 2. Mandelker et al. Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing. Genetics in Medicine 2016.
- 3. Wenger et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nature Biotech (2019)
- https://downloads.pacbcloud.com/public/dataset/HiFiTE Revio/Nov 2022/TwistAllianceDarkGene/TwistAllianceDarkGenes GeneList.txt


^{1.} Ji et al. Characterizing the genetic polymorphisms in 370 challenging medically relevant genes using long-read sequencing data from 41 human individuals among 19 global populations. bioRXiv https://doi.org/10.1101/2022.08.03.502734

Summary performance for *Dark Genes* panel

System	Sequel lle	Revio
Samples / SMRT Cell	4	12
HiFi yield / SMRT Cell	19.53 Gb	51.43 Gb
Mean read length	5.2 kb	5.5 kb
Median read quality	Q40	Q38
Mean reads / sample	893,459	724,795
Mean target coverage	75-fold	75-fold
Target bases ≥10-fold	93%	93%
Fold enrichment	54-fold	65-fold

Uniform coverage at *GBA* across 12-plex on Revio system

Twist Alliance Long Read PGx panel

Why PGx?

PacBi

- ~99% of adults have an actionable PGx variant (US, UK Biobank studies)
- ~50% of US adults are prescribed a drug for which there are CPIC guidelines
- > 100K adverse drug reactions per year in the US costing >\$30B

Panel design

2 Mb target region 49 genes full-length mtDNA spike-in available 39 full-length genes enable phasing Includes all 20 genes with CPIC guidelines

CYP genes	HLA	Oth	ers
CYP1A2*	<u>HLA-A</u>	ABCB1	HTR2C
<u>CYP2B6+</u>	HLA-B	ABCG2	IFNL3
CYP2C19	HLA-DQA1	ADD1	MT-RNR1
CYP2C8	HLA-DRB1	ADRA2A	MTHFR
<u>CYP2C9</u>		ANKK1	NAGS
CYP2D6		APOL1	NAT2
CYP3A4		BCHE	<u>NUDT15</u>
<u>CYP3A5</u>		CACNA1S	OPRD1
CYP4F2		<u>CFTR</u>	OPRK1
		COMT	OPRM1
		CTBP2P2	POLG
		<u>DPYD</u>	<u>RYR1</u>
*Bold denote	20	DRD2	SLC6A4
full-gene cov		F2	<u>SLCO1B1</u>
<u>+Underline</u> de	-	F5	<u>TPMT</u>
inclusion in a	CPIC	<u>G6PD</u>	<u>UGT1A1</u>
guideline		GBA	UGT2B15
		GRIK4	VKORC1

W

Stanford MEDICINE

 Ji Y et al. Preemptive pharmacogenetic testing: a comprehensive analysis of five actionable pharmacogenomic genes using next-generation DNA sequencing and a customized CYP2D6 genotyping cascade. J Mol Diagn (2015).

 Chanfreau-Coffinier C, et al. Projected prevalence of actionable pharmacogenetic variants and level A drugs prescribed among US veterans health administration pharmacy users. JAMA Netw Open (2019)

BED file: https://www.twistbioscience.com/resources/data-files/twist-alliance-long-read-pgx-panel-bed-file

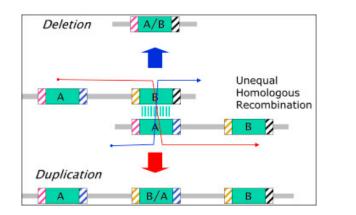
YEATS4

Sequel lle system 24-plex of reference samples

Panel size	2 Mb
HiFi yield per SMRT Cell	20.11 Gb
Mean read length	5.3 kb
Mean reads per sample	149,749
Mean target coverage	190-fold
Target bases ≥20-fold	96%
Fold enrichment	784-fold
PCR duplicate rate	2%
Demultiplex yield	96%

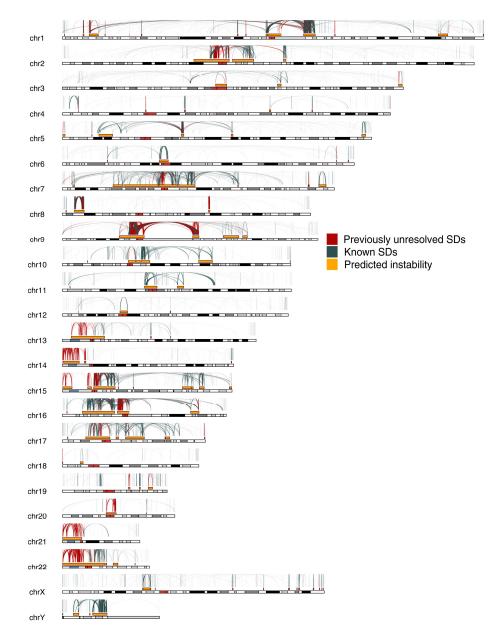
https://www.pacb.com/connect/datasets

Uniform coverage at *SLC6A4* across 24 samples on Sequel IIe system

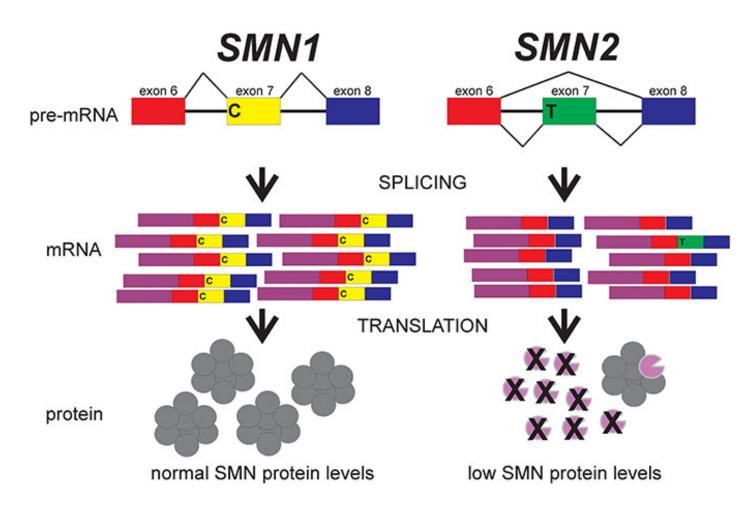


PacBi

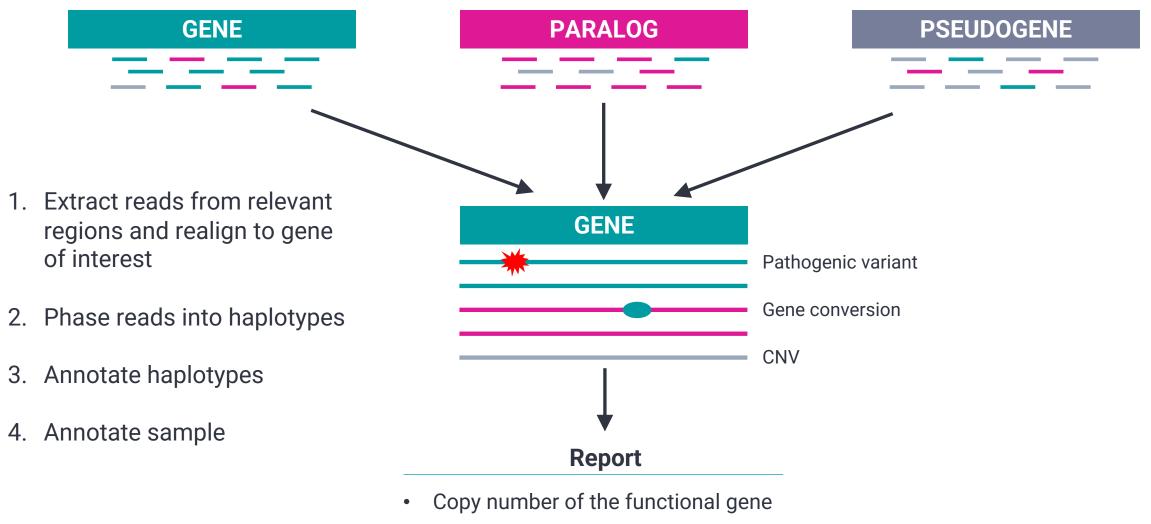
chr17: 30,192,000 - 30,236,000 (42 kb)


Segmental duplications are informatically challenging

- Segmental duplications comprise 7% of the human genome
- Many clinically relevant genes fall into segmental duplications
- Segmental duplications are hotspots for structural variations, including deletions, duplications and gene conversions.
- High sequence similarity poses challenges to read alignment and variant calling

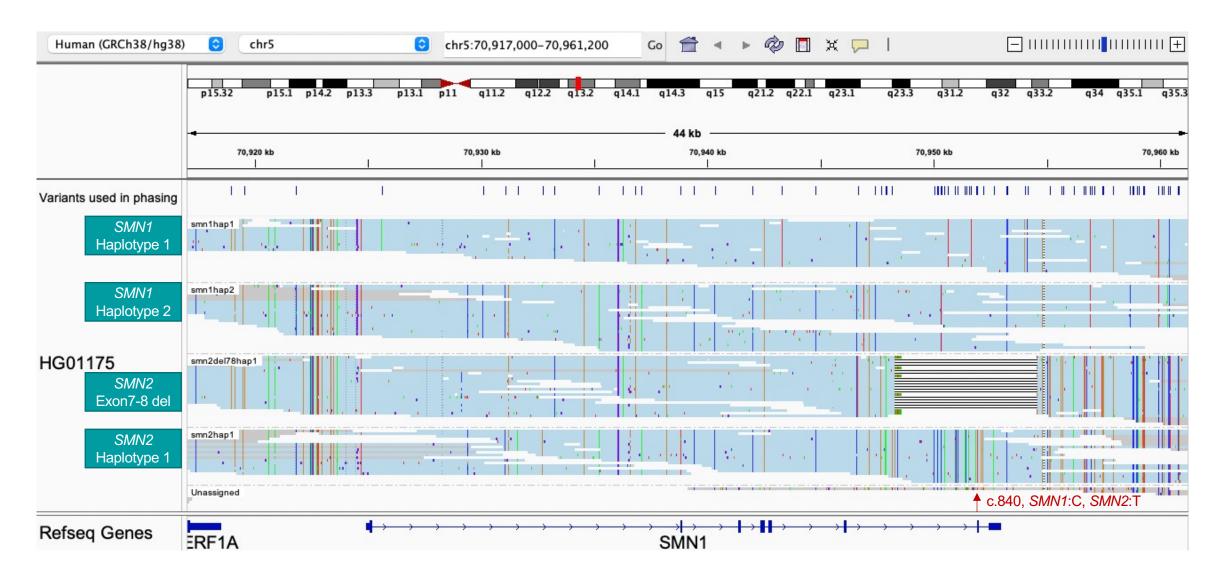


Vollger et al. *Science*, 2022 Antonarakis, *Medical and Health Genomics*, 2016 Borg et al. *Clinical Biochemistry*, 2009



Spinal muscular atrophy (SMA) and SMN1/SMN2

- Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder - a leading cause of infant death
- Lack of SMN1 leads to SMA
 - ~96% of SMA is due to biallelic absence of c.840C
 - ~4% involves other pathogenic variants within SMN1
- SMN1 testing is usually done by dosage (copy number) testing with MLPA or qPCR (targeting c.840C)
- Number of copies of *SMN2* modifies disease severity
- SMN1/SMN2 are ~30kb long and >99.9% homologous
 - 41% of HiFi WGS reads have a MAPQ lower than 5, and 85% of reads have a MAPQ lower than 20.


Paraphase: our approach for highly homologous genes

• Disease/carrier status

PacBi Chen et al, AJHG, 2023

Phasing SMN1/SMN2 haplotypes determines copy numbers

Chen et al. Comprehensive *SMN1* and *SMN2* profiling for spinal muscular atrophy analysis using long-read PacBio HiFi sequencing. *The American Journal of Human Genetics*. 2023;0(0). doi:10.1016/j.ajhg.2023.01.001 | <u>https://github.com/PacificBiosciences/paraphase</u>

Now applying Paraphase to more clinically relevant segmental duplications

Genes being assessed and associated diseases

- PMS2 (Lynch Syndrome)
- *STRC* (hereditary hearing loss and deafness)
- IKBKG (Incontinentia Pigmenti)
- NCF1 (chronic granulomatous disease; Williams syndrome)
- NEB (Nemaline myopathy)
- *F8* (intron 22 inversion, Hemophilia A)
- CFC1 (heterotaxy syndrome)
- and more...

Pharmacogenomics

PacBi

Content of Long Read PGx panel

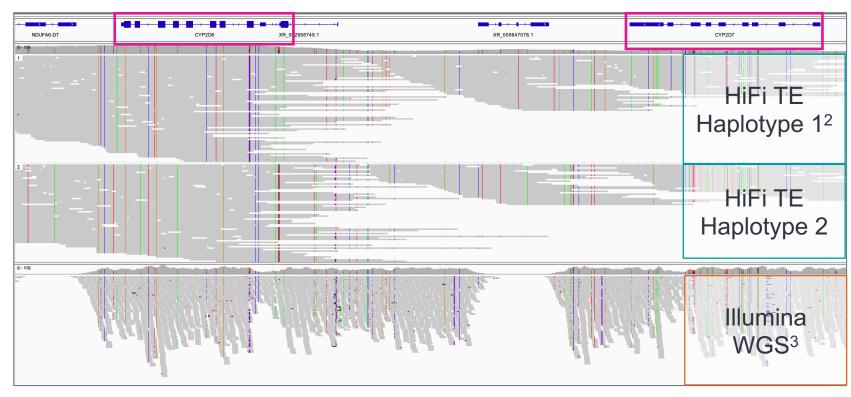
CYP genes	HLA	Others		
CYP1A2 CYP2B6 CYP2C19 CYP2C9 CYP2D6 CYP3A4 CYP3A5 CYP4F2	HLA-A HLA-B HLA-DQA1 HLA-DRB1	ABCB1 ABCG2 ADD1 ADRA2A ANKK1 APOL1 BCHE CACNA1S CFTR COMT CTBP2P2 DPYD DRD2 F2 F5 G6PD GBA GRIK4	HTR2C IFNL3 MT-RNR1 MTHFR NAGS NAT2 NUDT15 OPRD1 OPRM1 OPRK1 OPRM1 POLG RYR1 SLC6A4 SLC01B1 TPMT UGT1A1 UGT1A1 UGT2B15 VKORC1 YEATS4	

Data release

https://www.pacb.com/connect/datasets/#targeted-datasets

Sequel lle system

- Samples
 - HG002
 - HG00276
 - HG01190
 - NA07348
 - NA11832
 - NA18518
 - NA19109
 - NA19174
 - NA19207
 - NA19226
- Files available
 - Aligned BAM (hg38 reference)
 - HiFi reads Fastq
 - Gene list


58

Accurate star allele calling at CYP2D6

Benchmarking PacBio CYP2D6 genotyper, pangu¹

Haplotype phasing spans CYP2D6 and paralog CYP2D7

HG002, chr22:42,123,767-42,145,283

. https://github.com/PacificBiosciences/Pangu

- 2. https://downloads.pacbcloud.com/public/dataset/HiFiTE_Sqlle/Oct_2022/TwistAllianceLongReadPGx/
- https://storage.googleapis.com/brain-genomics-public/research/sequencing/grch38/bam/novaseq/wgs_pcr_free/50x/HG002.novaseq.pcrfree.50x.dedup.grch38.bam

Sample	GeT-RM	PacBio	Concordance
HG002	*2/*4	*2/*4	
HG00276	*4/*5	*4/*5	\checkmark
HG01190	*68+*4/*5	*68+*4/*5	
NA07019	*1/*4	*1/*4	\checkmark
NA07348	*1/*6	*1/*6	
NA10831	*4/*5	*4/*5	\checkmark
NA11832	*1/*68+*4	*1/*68+*4	
NA18484	*1/*17	*1/*17	\checkmark
NA18509	*2/*17	*2/*17	
NA18518	*17/*29	*17/*29	\checkmark
NA18519	*29/*1	*29/*106	- corrected
NA18540	*36x2+*10 /*41	*36+*10/*41	×
NA18552	*1/*14	*1/*14	
NA18564	*2/*36+*10	*2/*36+*10	\checkmark
NA18855	*1/*5	*1/(*5)	
NA18868	*2/*5	*2/*5	\checkmark
NA19109	*2x2/*29	*2x2/*29	
NA19122	*2/*17	*2/*17	
NA19147	*17/*29	*17/*29	
NA19174	*4/*40	*4/*40	
NA19207	*2x2/*10	*2x2/*10	
NA19226	*2/*2x2	*2/*2x2	
NA19239	*15/*17	*15/*17	

Completing the puzzle and enabling full featured genomes

A laundry list of bioinformatics solutions required for different problems

Examples of problems the computational biology group in PacBio works on:

- Caller for complex repeats characterization, e.g. STR, VNTR (TRGT)
- Caller for genes involved in segmentation duplication (e.g. Paraphase)
- Workflow for comprehensive characterization of variants from BAM to VCF (**pb-human-wgs-workflow**)
- Characterizing genes from targeted panel (e.g. HLA)
- Maximizing utility of HiFi sequencing for microbial applications (e.g. pb-metagenomics-tools and pb-16S-nf)
- Extracting more from the transcriptomes (e.g. **pbfusion**)
- 5-base sequencing (5mC) and beyond
- Benchmarking the accuracy of HiFi sequencing
- Emerging applications (e.g. WGS in cancer)

PacBie う 伯森生技

www.blossombio.com

Research use only. Not for use in diagnostic procedures. © 2022 PacBio. All rights reserved. PacBio, the PacBio logo, SMRT, SMRTbell, Iso-Seq, and Sequel are trademarks of PacBio. All other trademarks are the sole property of their respective owners.

PacBio

www.pacb.com

Research use only. Not for use in diagnostic procedures. © 2022 Pacific Biosciences of California, Inc. ("PacBio"). All rights reserved. Information in this document is subject to change without notice. PacBio assumes no responsibility for any errors or omissions in this document. Certain notices, terms, conditions and/or use restrictions may pertain to your use of PacBio products and/or third-party products. Refer to the applicable PacBio terms and conditions of sale and to the applicable license terms at pacb.com/license. Pacific Biosciences, the PacBio logo, PacBio, Circulomics, Omniome, SMRT, SMRTbell, Iso-Seq, Sequel, Nanobind, and SBB are trademarks of PacBio. All other trademarks are the sole property of their respective owners.