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Table 1| Prevalence and disease associations of high-risk PRS for six diseases in MGBB overall and by reported race

Disease Highrisk (%)* OR overall OR white OR Black OR Asian OR Other/Unknown
OR (95% CI)* (n/n,n/n)*  OR(95% CI)* (n/n,n/n)*  OR(95% CI)® (n/n, OR (95% CI)* (n/n, OR (95% CI)* (n/n,
n/n)¢ n/n)c n/n)‘
BrCa 8.6 2.38 2.39 224 0.51 235
Kev Take aways (207-273) (2.07-2.76) (0.97-515) (0.07-39) (108-51)
- (286/1,400,1,427/16,606) (270/1,156,1,318/13,495)  (7/73,43/1004) (1/33, 24/405) (8/138, 42/1,702)
CRCa 54 2.37 2.29 4m 0 3.30
« New clinic will empower patients to better understand, predict and preve (1.74-3.24) (1.65-319) (117-14.48) (0-NaN) (0.73-14.88)
o (46/1,913,346/34117) (41/1,646,312/28,717) (3/83,15/1706) (0/35,7/744) (2/149,12/2,950)
genetic information. PrCa 131 2.22 2.31 1.39 2.58 141
(1.98-2.48) (2.05-2.59) (0.74-2.59) (0.5-13.28) (0.78-2.58)
: ) . . . - (498/1,698,1,693/12,813) (468/1,448,1,544/11,017)  (14/71, 74/521) (2/36,6/279) (14/143, 69/996)
+ The clinic will be embedded within primary care practices at MGH and al
) AFib 83 2.37 2.40 1.47 2.00 2.28
‘eConsult’ program (212-2.64) (214-2.69) (0.72-3.01) (0.57-7.03) (1.32-3.94)
(450/2,589, 2,282/31,101) (422/2,179, 2101/26,014)  (9/137,71/1590) (3/62,17/704) (16/211, 93/2,793)
CAD 9.8 1.86 1.91 1.41 3.96 147
(1.69-2.05) (1.73-212) (0.86-2.29) (1.79-8.76) (0.97-2.22)
(562/3,018,2,991/29,851) (503/2,459, 2,680/25,074) (21/177,125/1484)  (9/51, 31/695) (29/331,155/2,598)
T2D 84 1.75 1.93 1.21 1.07 1.58
(1.57-1.95) (1.71-217) (0.7-2.09) (0.37-3.08) (114-219)

(439/2,612,2,924/30,447) (367/2,284,2,159/25906) (18/57,358/1374)

(4/49, 52/681)

(50/222, 355/2,486)

€< We bel
the future. 99

ieve DNA testing will be a key piece of routine care in

Amit V. Khera, MD

Co-founder, Mass General Preventive Genomics Clinic



Iompleﬁiiseases (Polygenic disease)
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Genome-wide polygenic score
for weight and obesity
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MULTIPLE LINEAR REGRESSION FRAMEWORK
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- Effect size estimated from independent samples
- SNPs were pruned to be independent with each other.
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THEORETICAL PRS ACCURACY
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PRS have a theoretical upper limit dependent on the broad sense trait
heritability

PRS have a technical upper limit associated with the proportion of variance
tagged by the DNA variants measured (or SNP-based heritability as we are using
GWAS data).

PRS have a practical upper limit dependent on the sample size of the discovery
dataset used to estimate effect sizes of risk alleles, and the quality of the
discovery data.

PRS can be pushed closer to the technical upper limit by the statistical
methodology used to generate the optimal weighting given to the risk alleles, and
new methods integrate new biological data (e.g., functional annotations).



DIFFERENT EXPECTED SIGNATURES FROM GENOME-WIDE
ASSOCIATION STUDIES FOR FOUR MODELS OF DISEASE.
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GENETIC PREDICTION OF
COMPLEX TRAITS WITH

POLYGENIC SCORES: A

STATISTICAL REVIE
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EVALUATING MODEL PERFORMANCE
TRAINING, TESTING AND CROSS-VALIDATION

Classification

Regression

https://scikit-learn.org/stable/modules/cross_validation.html

https://www.mathworks.com/discovery/overfitting.html
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https://scikit-learn.org/stable/modules/cross_validation.html

AREA UNDER CURVE (AUC)
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GENETIC TEST NEED TO BE
VALH)ABH)USEFUL
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Risk discrimination: how well can we separate people by risk?
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Use-Case Example - UK Breast Cancer

Population stratification of Breast Cancer
e Background - Routine screening is not offered to women in Screening using either PRS or rare variants

their 40s. This is because the disease is less common in this

group so mass screening becomes less cost-effective. 2018F 58 vs XEIFLEBITFRFR DR
e Problem - Circa 8,000 new breast cancer cases diagnosed 35 =
in this group every year in the UK. Symptomatic 20 : 23 4
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COMPREHENSIVE INHERITED RISK ESTIMATION FOR
RISK-BASED BREAST CANCER SCREENING IN WOMEN

Breast cancer
risk factors

Overall effect
of risk factors

Effect of risk
factors within
breast cancer

screening

117,252

N =

115,799

Polygenic Pathogenic
risk score variants®

Before
screening age

During After
screening age screening age

50 years 69 years

N\

50 years 69 years

During
screening age

Positive predictive value
Benign v malignant screening finding
Risk of screen-detected v interval breast cancer

»
>

11,556 breast cancer
2,437 pathogenic variants (PVs) carriers,

2.1%; CHEKZc.1100delC 1.6%, CHEKZ¢.319+2T>A

0.2%, and PALB2c.1592delT 0.3%
Family History (FH) of breast cancer, parental

causes of death, first-degree relatives diagnosed
with breast cancer, or an1CD-10 diagnosis for FH.

Category
Any breast cancer, No.
Invasive breast cancer, No.
In situ breast cancer, No.
Bilateral breast cancer, No.

Age at disease onset, years,
median (IQR)

PRS =90% in cases, No. (%)
PRS =90% in controls, No. (%)
PV carriers in cases, No. (%)
PV carriers in controls, No. (%)
Positive FH in cases, No. (%)

Positive FH in controls, No. (%)

Before Screening

Age

1,453

1,377
74
20

45.9 (42.9-47.9)

341 (23.5)
11,210 (9.9)
94 (6.5)
2,343 (2.0)
107 (7.4)

3,605 (31)

During Screening

Age
7,905
7,145

760

96

59.1 (54.2-64.1)

1,663 (21.0)
9,547 (8.8)
345 (4.4)
1,998 (1.9)
489 (6.2)

3,116 (2.9)

After Screening

Age
2,198
2,058

140
36

73.5 (70.1-76.7)

404 (18.4)
3,652 (8.5)
73 (3.3)
740 (1.7)
53 (2.4)

865 (2.0)



THE
CHALLENGE
OF PRS
PREDICTION
IN NON:-
EUROPEAN

ANCESTRIES
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Fig. 1| Ancestry of GWAS participants over time, as compared with the
global population. Cumulative data, as reported by the GWAS catalog™.
Individuals whose ancestry is ‘not reported’ are not shown.

Martin AR, Kanai M, et al. Nat Genet. 2019;51:584-591.
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