

CLC Genomics Workbench

From Samples to Insights - RNA sequencing

A powerful solution that works for everyone on NGS-data analyses & annotations

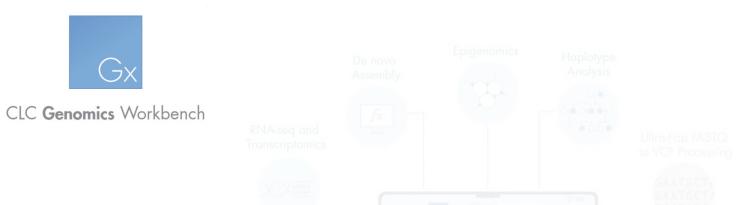
次世代定序序列分析軟體 CLC

生物路徑分析軟體 IPA

Nereus Chang Senior Engineer 張嘉瑋

Cleo Hsi Sale Specialist 業務專員

熊嘉妮 **Christine Hsiung** 專案主任 **Project Supervisor**

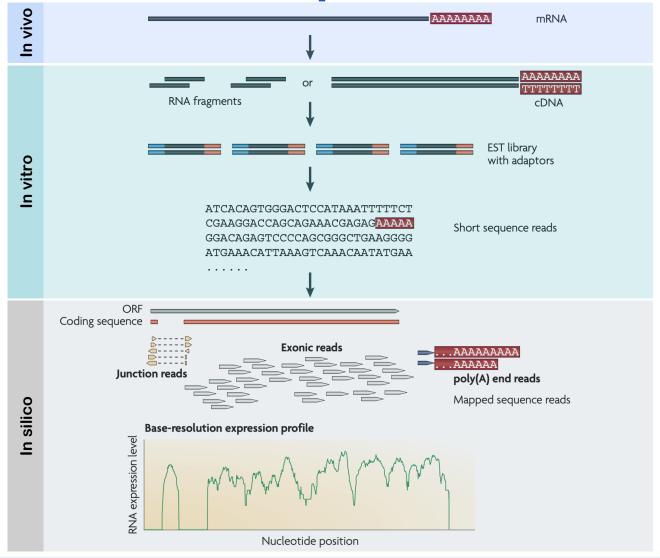

OUTLINE

Bulk RNA-seq Analysis

- Case study: Dynamic gene expression changes in the mouse brain during pregnancy and the postpartum period
- Hands-on Session
- Single-cell RNA-seq Analysis
 - Case study: Key benefits of dexamethasone and antibody treatment in COVID-19 hamster models
 - Hands-on Session
- Spatial single-cell RNA-seq Analysis
 - Case study: Spatial transcriptomics reveals distinct tumour core and edge architectures
 - Hands-on Session

Bulk RNA Sequencing Analysis

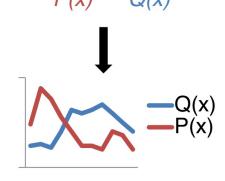
BIOINFORMATICS POWERED BY



Typical Bulk RNA-seq Overview

Conventional RNA-seq Analysis Study Design

Raw counts


Normalization, log transformed, and/or denoising

Low Expression High

Processed gene expression

Estimate expression distribution given cell-level covariates

Gene expression distribution for each gene and each individual

	sample A1	sample A2	sample B1	sample B2
gene 1	8	10	100	200
gene 2	14	15	15	40
gene 3	33	40	35	70
gene N	100	120	105	220

	sample A1	sample A2	sample B1	sample B2
gene 1	8	10	100	200
gene 2	14	15	115	40
gene 3	33	40	35	70
gene N	100	120	105	220
'				
	Tot. reads: 10 millions			

	sample A1	sample A2	sample B1	sample B2
gene 1	0.16	0.20	2.00	2.00
gene 2	0.28	0.30	0.30	0.40
gene 3	0.66	0.80	0.70	0.70
gene N	2.00	2.40	2.10	2.20

READ MAPPING

Find original read source within the reference genome or transcriptome.

COUNTS COMPUTATION

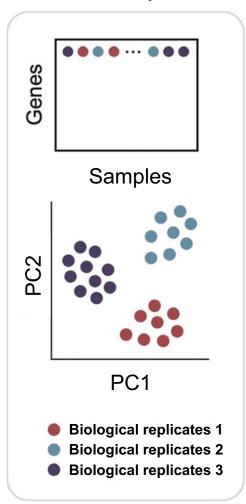
Estimate gene expression with "counts", i.e. with the number of reads mapped on each gene.

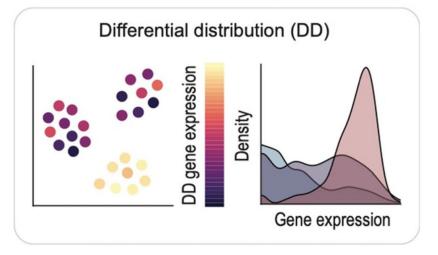
COUNTS NORMALIZATION

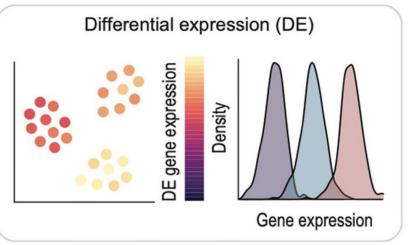
Eliminate biases to make expression levels comparable between samples (e.g. different sequencing depths of samples A1 and B2) and within samples (e.g. different lengths of gene 1 and gene 2).

DIFFERENTIAL EXPRESSION ANALYSIS

Identify genes with statistically different expression levels in the compared conditions (e.g. A and B).

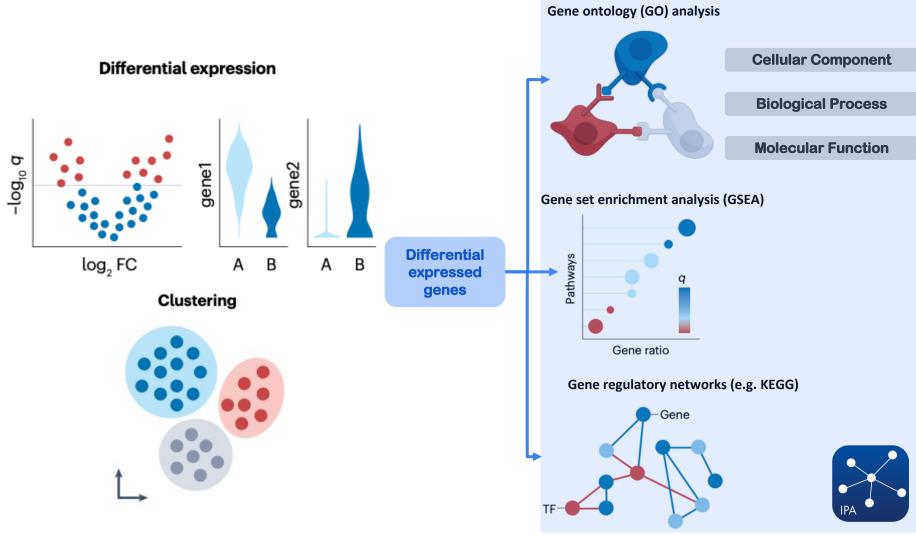





Differential Gene Expression Analysis

scRNA-seq data

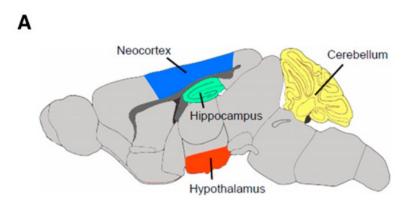
Differential analysis



Bulk RNA-seq Downstream Analyses

Hands-on session: RNA-seq analysis

BIOINFORMATICS POWERED BY



Study of Sample Data and Study Design

Ray, S., et al. (2015). An examination of dynamic gene expression changes in the mouse brain during pregnancy and the postpartum period. *G3* (*Bethesda*, *Md.*), 6(1), 221–233. https://doi.org/10.1534/g3.115.020982

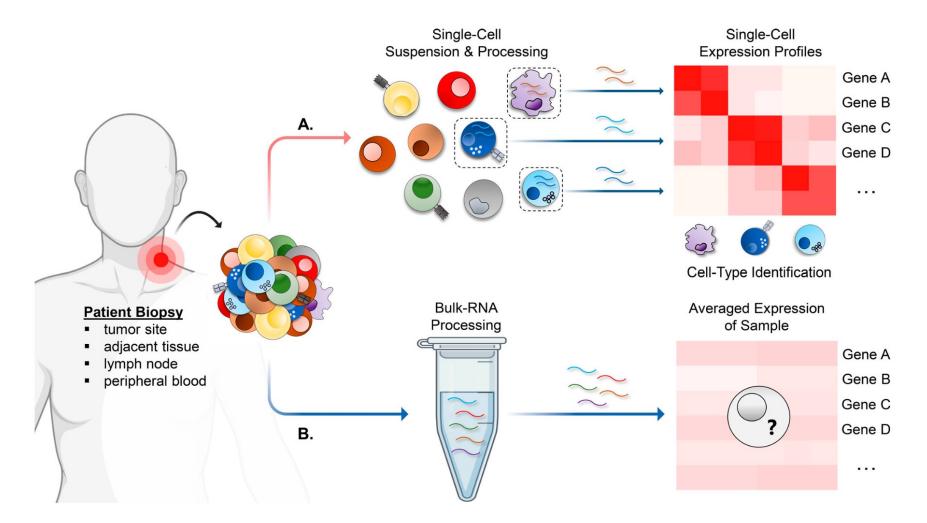
В

Virgin	Female mouse - unmated
PC14	Dam - 14 days post-conception
PC16	Dam - 16 days post-conception
PP1	Dam - 1 day postpartum
PP3	Dam - 3 days postpartum
PP10	Dam - 10 days postpartum

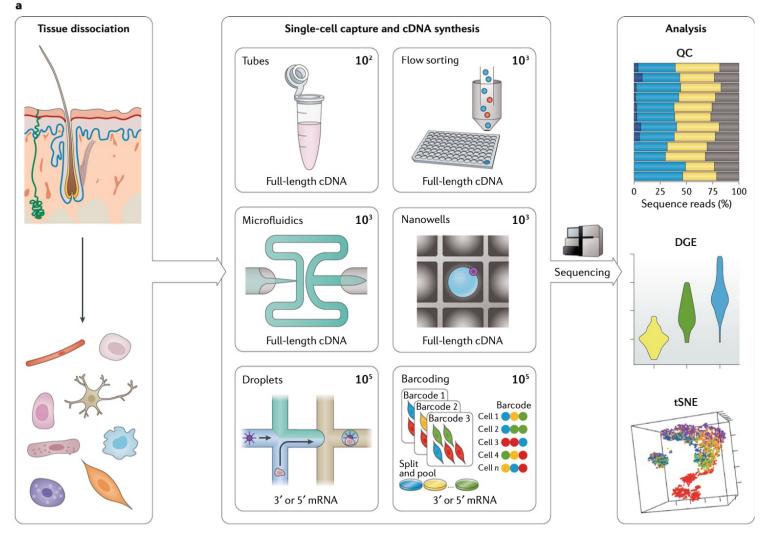

Three samples for each tissue (4) and time points (6), 72 samples in total.

Single-cell RNA-Seq Analysis

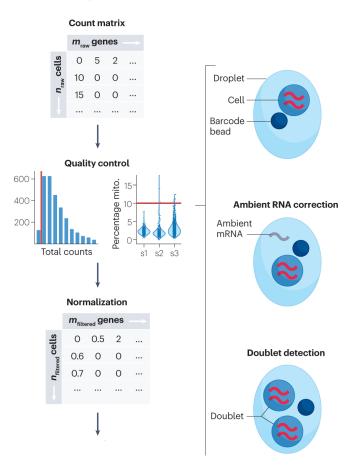
BIOINFORMATICS POWERED BY

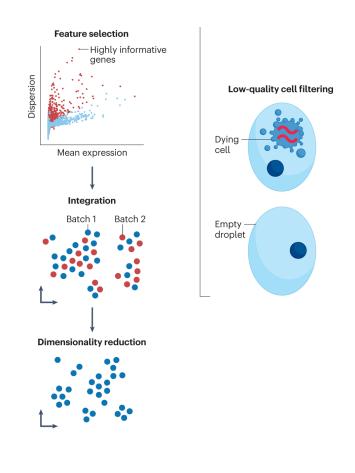


Bulk RNA-seq vs. Single-Cell RNA-seq (scrna-seq)



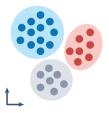
scRNA-seq with droplet-based methods





Spatial scRNA-seq Analysis (1/2)

a Preprocessing and visualization



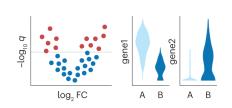
Spatial scRNA-seq Analysis (2/2)

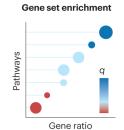
b Identifying cellular structure

Clustering

Reference mapping

Cluster annotation



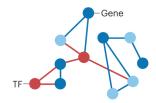

Trajectory inference

Downstream analyses

C Revealing mechanisms

Differential expression

Cell-type composition

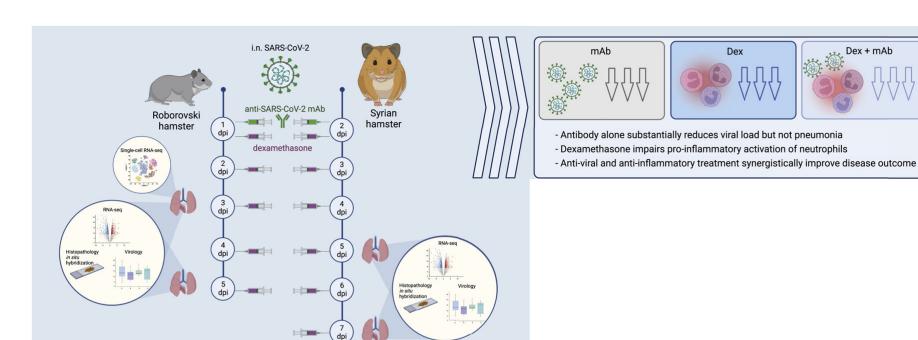

Perturbation modelling

Cell-cell communication

Gene regulatory networks

Hands-on session: scRNA-seq analysis

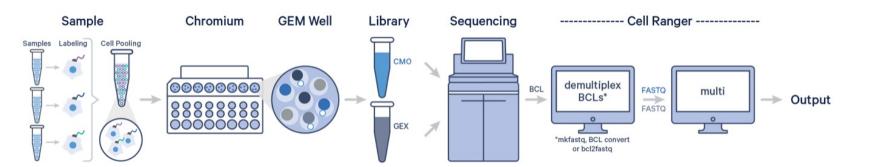
BIOINFORMATICS POWERED BY



Dex + mAb

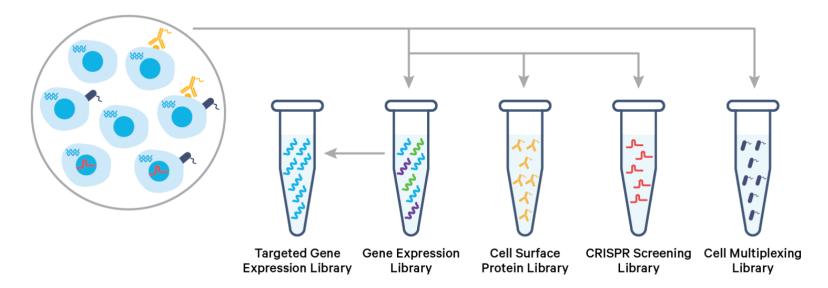
Study of Sample Data and Study Design

Wyler, E., et al. (2022). Key benefits of dexamethasone and antibody treatment in COVID-19 hamster models revealed by single-cell transcriptomics. Molecular therapy, 30(5), 1952–1965. https://doi.org/10.1016/j.ymthe.2022.03.014



Analysing 3' CellPlex data with Cell Ranger

Cell Ranger v6.0 or later is required to analyze Cell Multiplexing data. Multiple samples are uniquely tagged with CMOs prior to pooling in a single GEM well, resulting in a CMO and Gene Expression (GEX) library for each GEM well. After demultiplexing the BCL files, run the cellranger multi pipeline on the combined FASTQ data for the CMO and GEX libraries to obtain separate per-sample output files for each CMO.



10x Genomics 3' CellPlex Multiplexing Soul.

The 10x Genomics 3' CellPlex Multiplexing Solution is a Feature Barcode technology, similar to existing 10x Genomics Cell Surface Protein and CRISPR Screening assays. 3' CellPlex is enabled by SingleCell 3' v3.1 gelbeads and reagents. Cells or nuclei labeled with Cell Multiplexing Oligos (CMOs) are pooled prior to loading onto a 10x Genomics chip. cDNA from poly-adenylated mRNA and DNA from the CMO Feature Barcode are generated simultaneously from the same single cells inside of a Gel Bead-in-Emulsion (GEM). 3' CellPlex reagents are compatible with samples whose cell surface proteins have been labeled with TotalSeq-B antibody-oligonucleotide conjugates or samples transduced with Feature Barcode technology compatible sgRNA constructs.

Series GSE1910	Query DataSets for GSE191080
Status	Public on Dec 18, 2021
Title	Insights into standards of care – dexamethasone and antibodies against COVID-19 in hamster models
Organisms	Mesocricetus auratus; Phodopus roborovskii
Experiment type	Expression profiling by high throughput sequencing
Summary	We describe the cellular response to SARS-CoV-2 infections combined with antibody and/or dexamethasone treatment in Syrian and Roborovski dwarf hamsters
Overall design	Histopathology and bulk RNA-seq was performed from the lung of animals both species, single-cell RNA-sequencing was performed from lungs of Roborvski dwarf hamsters, upon SARS-CoV-2 infections combined with the indicated treatments.
Contributor(s)	Wyler E, Adler JM, Eschke K, Teixeira G, Peidli S, Pott F, Kazmierski J, Postmus D, Michalick L, Kershaw O, Hoppe J, Andreotti S, Pennitz P, Goffinet C, Kreye J, Reincke SM, Prüss H, Blüthgen N, Gruber AD, Witzenrath M, Landthaler M, Nouailles G, Trimpert J
Citation(s)	35339689

Samples (54) **■ Less...**

```
GSM5738371 RNA_aaUntr_5dpi_ha1
```

GSM5738372 RNA_aaUntr_5dpi_ha2

GSM5738373 RNA_aaUntr_5dpi_ha3

GSM5738374 RNA_aaUntr_7dpi_ha1

GSM5738375 RNA_aaUntr_7dpi_ha2

:

GSM5738419 Hamster1_CELLPLEX

GSM5738420 Hamster1_GEX

GSM5738421 Hamster2_CELLPLEX

GSM5738422 Hamster2_GEX

GSM5738423 Hamster3_CELLPLEX

GSM5738424 Hamster3_GEX

Relations

BioProject PRJNA789576

scRNA-seq data

Sample GSM5738420

Query DataSets for GSM5738420

Status Public on Dec 18, 2021

Title Hamster1_GEX

Sample type SRA

Source name multiplexed sample

Organism Phodopus roborovskii

Characteristics tissue: Lung

treatment: Multiplexed sample (mixed treatments)

sampling timepoint: 3dpi

Treatment protocol At 6-10 weeks of age hamsters were infected intranasally as previously

described (PMID 32698441, 33271063). Briefly, hamster received 1 x 105 pfu

SARS-CoV-2 Variant B1 (BavPat1) intranasally under anesthesia.

Growth protocol Hamsters were weighted daily and monitored for signs of disease twice-daily.

Severely sick animals were euthanized according to defined humane endpoints including body temperature <33 °C, acute respiratory distress or weight loss >20%. Hamsters were selected randomly for all scheduled take-out time points (day 3 and 5 for Roborovski hamsters, day 5 and 7 for Syrian

hamsters).

Euthanasia prior analysis occurred by exsanguination under anesthesia as previously described (PMID 32698441, 33271063). Peripheral blood was collected in EDTA-coated syringes and lung lobes were collected for follow-up analyses, in which the left lobe was used for histopathology, the right caudal lobe for single-cell analysis, the right cranial lobe for virological assessments and the right medial as backup to repeat virological analyses as needed.

Extracted molecule polyA RNA

Library strategy RNA-Seq

Library source transcriptomic

Library selection cDNA

Instrument model Illumina NovaSeq 6000

Description Processed data files include DexAb*rds and DexAb.loom files on series record.

10xGenomics Chromium v3.1 single cell 3' gene expression kit

Data processing For bulk RNA-sequencing, alignments were done using hisat2 (Kim et al, 2015)

Syrian hamster: Sequencing reads were aligned to the MesAur 1.0 version of the Mesocricetus auratus genome using standard parameter, using the Refseq

gtf file described in GEO accession number GSE162208

Roborovski hamster: Sequencing reads were aligned to the draft assembly and

gtf file described previously (doi: 10.1101/2021.10.02.462569)

For single-cell RNA-sequencing data, fastq files were processed using a merged Roborvski hamster/SARS-CoV-2 genome by applying CellRanger 6.0.2 with

standard parameters

Seurat R and loom objects were processed as described on the github page https://github.com/Berlin-Hamster-Single-Cell-Consortium/Dwarf-Hamster-

Dexamethasone-Antibody Genome build: MesAur 1.0

Genome_build: Phodopus roborvskii draft assembly

Genome_build: SARS-CoV-2 MN908947

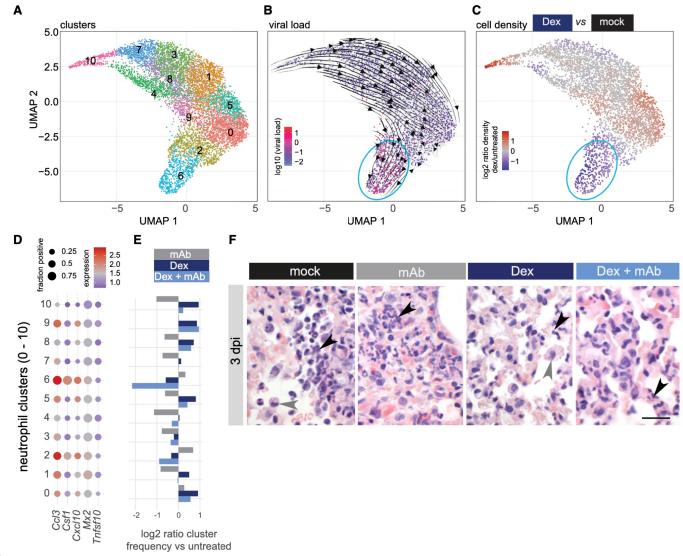
Supplementary_files_format_and_content: tab-separated values

Supplementary_files_format_and_content: h5 matrix

Supplementary_files_format_and_content: Seurat R object Supplementary_files_format_and_content: loom object

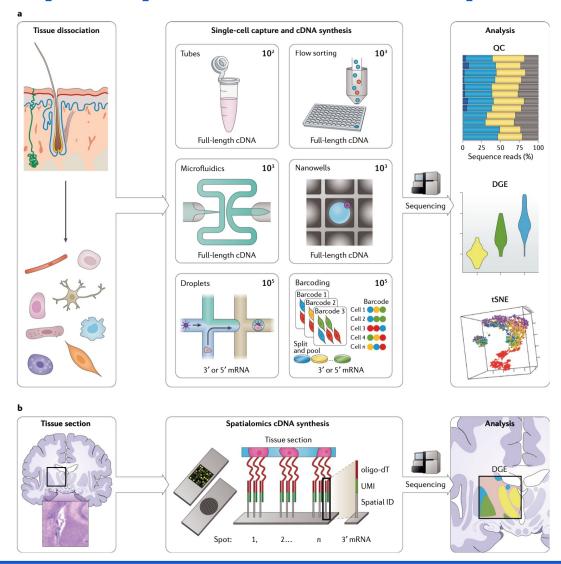
Sample to analysis

BioSample SAMN24144554 SRA SRX13428793

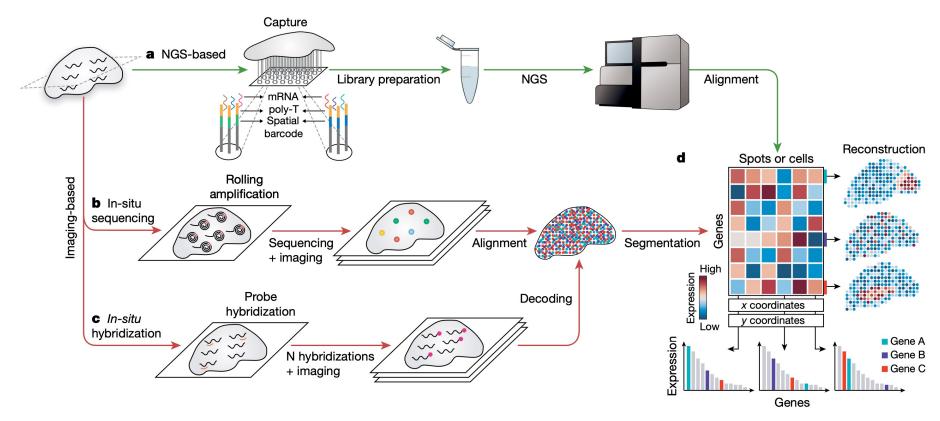

Supplementary file	Size	Download	File type/resource
GSM5738420_Hamster1_AB1_sample_feature_bc_matrix.h5	2.2 Mb	(ftp)(http)	H5
GSM5738420_Hamster1_AB2_sample_feature_bc_matrix.h5	3.9 Mb	(ftp)(http)	H5
GSM5738420_Hamster1_AB3_sample_feature_bc_matrix.h5	3.8 Mb	(ftp)(http)	H5
GSM5738420_Hamster1_ABD1_sample_feature_bc_matrix.h5	2.7 Mb	(ftp)(http)	H5
GSM5738420_Hamster1_ABD2_sample_feature_bc_matrix.h5	2.1 Mb	(ftp)(http)	H5
GSM5738420_Hamster1_ABD3_sample_feature_bc_matrix.h5	4.1 Mb	(ftp)(http)	H5
GSM5738420_Hamster1_D1_sample_feature_bc_matrix.h5	2.3 Mb	(ftp)(http)	H5
GSM5738420_Hamster1_D2_sample_feature_bc_matrix.h5	3.9 Mb	(ftp)(http)	H5
GSM5738420_Hamster1_D3_sample_feature_bc_matrix.h5	4.5 Mb	(ftp)(http)	H5
GSM5738420_Hamster1_U1_sample_feature_bc_matrix.h5	3.6 Mb	(ftp)(http)	H5
GSM5738420_Hamster1_U2_sample_feature_bc_matrix.h5	2.8 Mb	(ftp)(http)	H5
GSM5738420_Hamster1_U3_sample_feature_bc_matrix.h5	2.2 Mb	(ftp)(http)	H5

Treatment Effects Revealed by scRNA-seq

BIOINFORMATICS POWERED BY



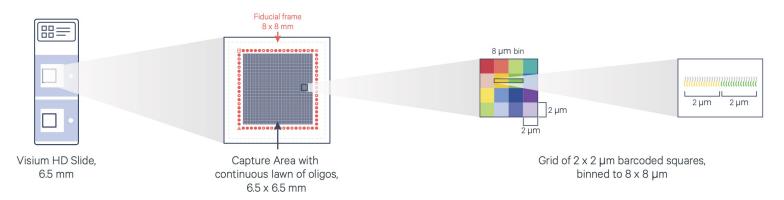
scRNA-seq to Spatial scRNA-seq



Technologies of Spatial Transcriptomics

 $\begin{tabular}{ll} Fig. 1 | The technologies of spatial transcriptomics provide a \\ gene-expression matrix. a, NGS-based spatial transcriptomic methods \\ barcode transcripts according to their location in a lattice of spots. b, ISS \\ approaches directly read out the transcript sequence within the tissue. c, ISH \\ \end{tabular}$

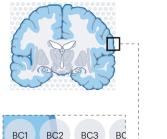
methods detect target sequences by hybridization of complementary fluorescent probes. **d**, The product of spatial transcriptomics is the gene-expression matrix, in which the rows and columns correspond to genes and locations.

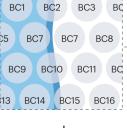


10x Genomics Visium HD Spatial Gene Expression

Next-generation slide architecture enables single cell-scale resolution

Visium HD Spatial Gene Expression slides contain two 6.5 x 6.5 mm Capture Areas with a continuous lawn of oligonucleotides arrayed in ~11 million 2 x 2 μ m barcoded squares without gaps, achieving single cell–scale spatial resolution. The data is output at 2 μ m, as well as multiple bin sizes. The 8 x 8 μ m bin is the recommended starting point for visualization and analysis.

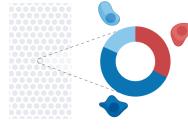




Spatial scRNA-seq Analysis

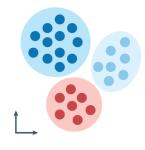
a Array-based spatial transcriptomics

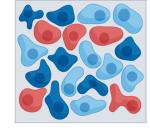
Tissue slice on barcode regions



Count matrix and coordinates of barcode regions

	m _{raw} genes				х	у	
S	0	5	2		-10	3	
n _{raw} BCs	10	0	0		-5	7	
_	15	0	0		2	3	

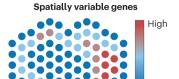



Cell count matrix and cell coordinates

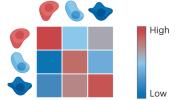
	m _{raw} g	genes	х	у	
cells	0.1	3.5	 -10	3	
n _{raw} ce	7.2	0.2	 -5	7	
2	11.1	0.3	 2	3	

C Identifying cellular structure

Annotation



Spatial mapping

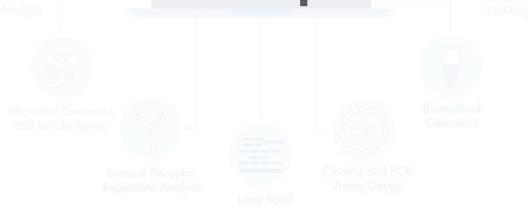

Downstream analyses

d Revealing mechanisms

Low

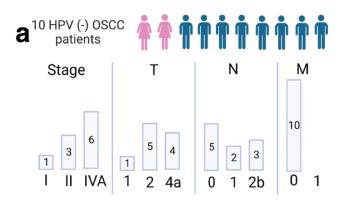
Neighbourhood analysis

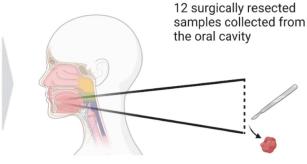
Cell-cell communication

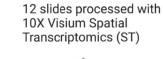


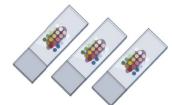
Hands-on session: Spatial scRNA-seq

BIOINFORMATICS POWERED BY

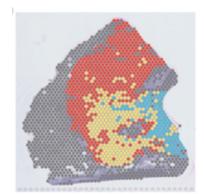


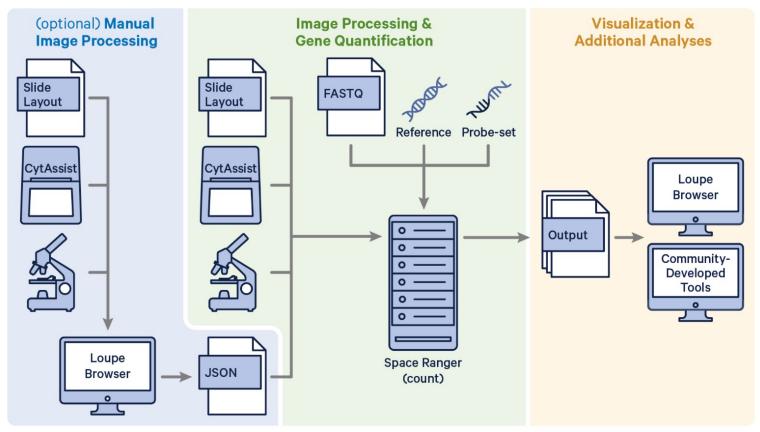





Study of Sample Data and Study Design

Arora, R., et al. (2023). **Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response.** Nature communications, 14(1), 5029. https://doi.org/10.1038/s41467-023-40271-4





Visium HD Analysis with spaceranger count

Space Ranger v3.0 and later can analyze Visium HD Spatial Gene Expression datasets generated from formalin fixed paraffin embedded (FFPE) human or mouse samples and the Visium CytAssist instrument. The spaceranger count pipeline is necessary to analyze these data.

Sample GSM6339632

Ouerv DataSets for GSM6339632

Status Public on Jun 25, 2023

Title sample_2

Sample type SRA

Source name OSCC

Organism Homo sapiens

Characteristics Stage: Stage IVA

tissue: Oral squamous cell carcinoma (OSCC)

library preparation: 10X Genomics Visium Spatial Gene Expression Slide &

Reagent kit

Extracted molecule polyA RNA

Extraction protocol Banked fresh-frozen OSCC samples were obtained from the in collaboration

with the Ohlson Research Institute and the Department of Pathology and Laboratory Medicine. This study was reviewed and approved by the Health Research Ethics Board of Alberta – Cancer Committee (reference number: HREBA.CC-16-0644) A subset of samples were then chosen for downstream processing based on tissue quality. OSCC samples were permeabilized enzymatically according to the Visium Protocol CG000240. Samples were then processed using the Visium Spatial Gene Expression Reagent Kit according to

the manufacturer's instructions (10x Genomics, Pleasanton, CA, USA).

OSCC samples were permeabilized enzymatically according to the Visium Protocol CG000240. Samples were then processed using the Visium Spatial Gene Expression Reagent Kit according to the manufacturer's instructions (10x

Genomics, Pleasanton, CA, USA).

Library strategy OTHER

Library source transcriptomic

Library selection other

Instrument model Illumina NovaSeq 6000

Data processing All raw FASTQ reads were aligned to Homo_sapiens : GRCh38 reference using

the spaceranger count algorithim and quantified through the 10X Genomics space ranger spatial transcriptomics pipeline, with default and recommended parameters. Spaceranger outputs were combined and read depth normalized using the spaceranger aggr function, producing aggregated feature-barcode

matrices used in downstream analysis. Assembly: Homo_sapiens : GRCh38

Supplementary files format and content: Filtered feature - barcode HDF5 file output from spaceranger pipeline, Spatial tissue position list CSV, high resolution tissue image as a PNG, scalefactors for tissue positions as a JSON

Library strategy: Spatial Transcriptomics

Submission date Jul 14, 2022
Last update date Jun 29, 2023
Contact name Pinaki Bose

E-mail(s) pbose@ucalgary.ca

Organization name University of Calgary

Street address HMRB 354, 3330 Hospital Dr. NW

City Calgary

Platform ID GPL24676

Series (1) GSE208253 Spatial transcriptomics reveals distinct and conserved tumor

core and edge architectures that predict survival and targeted

therapy response

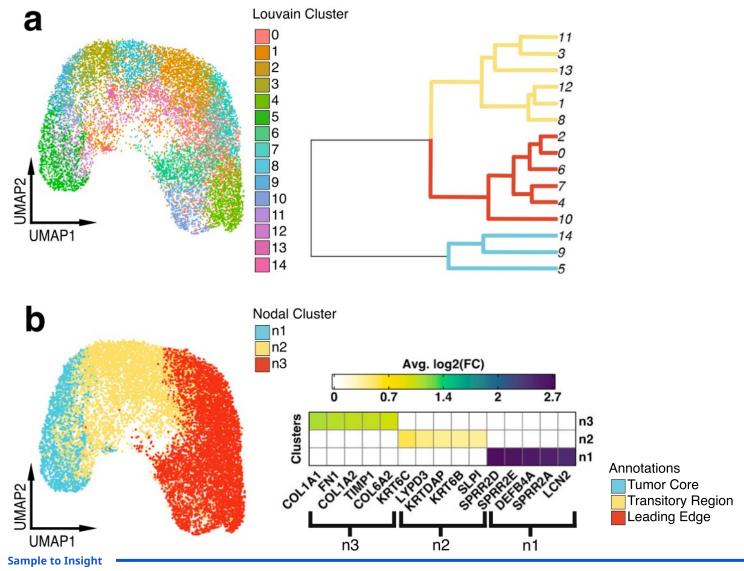
Relations

BioSample SAMN29758218 SRA SRX16247929

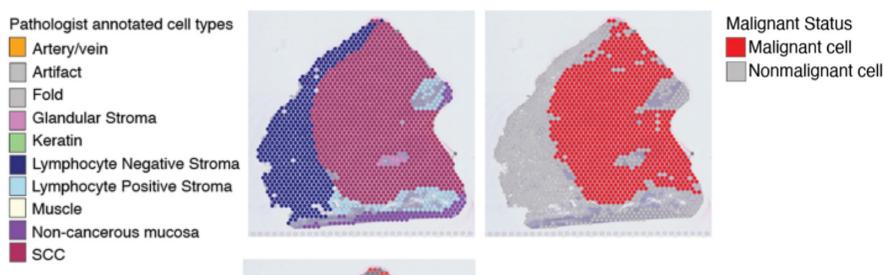
Supplementary file	Size	Download	File type/resource
GSM6339632_s2_filtered_feature_bc_matrix.h5	5.8 Mb	(ftp)(http)	H5
GSM6339632_s2_scalefactors_json.json.gz	168 b	(ftp)(http)	JSON
GSM6339632_s2_tissue_hires_image.png.gz	6.0 Mb	(ftp)(http)	PNG
GSM6339632_s2_tissue_positions_list.csv.gz	66.7 Kb	(ftp)(http)	CSV

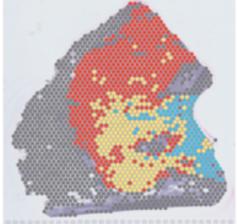
SRA Run Selector 2

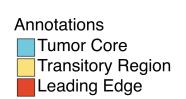
Raw data are available in SRA


Processed data provided as supplementary file

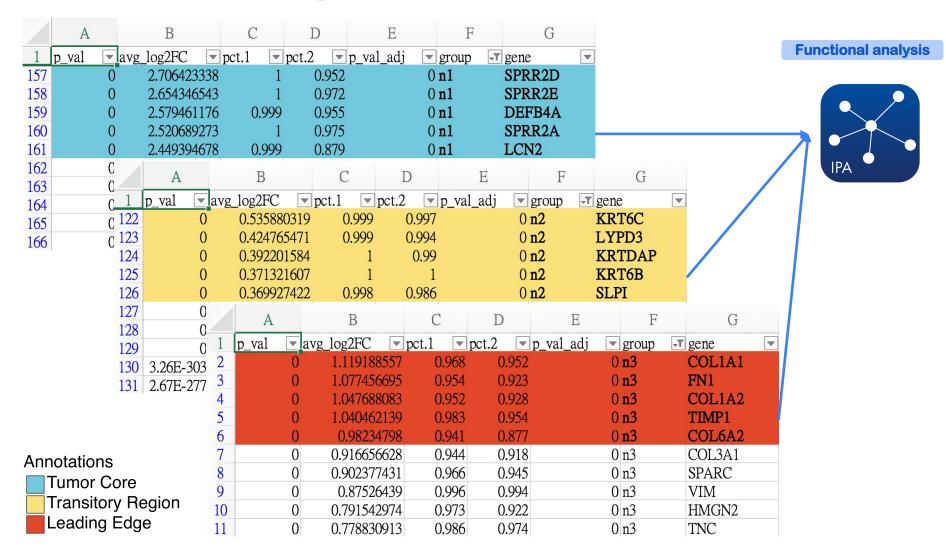
Aggregated Inspection on the 12 Samples







Individual Sample Annotation



Differential Expressed Genes

For more product details, please refer to:

QIAGEN CLC Genomics Workbench

QIAGEN CLC Genomics Workbench Premium

https://rb.gy/wu3jtd

業務專員

Cleo Hsi 席佩妤

EMAIL | CleoHsi@GGA.ASIA

TELE | 02-2795-1777 # 3014

技術服務

Nereus Chang 張嘉瑋

EMAIL | NereusChang@GGA.ASIA

TELE | 02-2795-1777 # 3027

Thank You for Your Attention