

Insights into single-cell RNA-seq via Qiagen Ingenuity Pathway analysis

Cleo Hsi資深業務專員 Christine Hsiung 熊嘉妮 專案主任

Bioinfo@GGA.ASIA

- Introduction to QIAGEN Ingenuity Pathway Analysis
- Querying IPA's Knowledge base
 - Search in IPA
 - Custom network construction
 - Contextualization using public data
- Analyzing RNA seq using IPA
 - Data format
 - Data upload and analysis setup
 - Core analysis
- Summary

Operating systems

- Windows operating systems:
 - Windows 11, 10, 8
- Mac operating systems:
 - macOS Sonoma, Ventura, Monterey
- Internet browsers:
 - □ Firefox 91 or later*
 - □ Safari 16 or later*
 - □ Chrome 110 or later*
 - □ Microsoft Edge 94 or later*
- ◆ Java runtime environment (<u>JRE;</u> not needed if you <u>install</u> the IPA client):
 - □ JRE 8 to 10

Hardware

•CoreTM i5 processor or equivalent running at 2 GHz or higher with 64-bit OS and Java •Minimum at least 3 GB RAM free for Java

An example: Analyzing variant data from Sample to Insight

 \rightarrow

Sample to data

NGS library prep Sequencing

- Platform- and assay-agnostic
- Whole genome, whole exome, custom panels

Data to information

Normalization and quality control Read mapping

Variant calling

QIAGEN CLC Genomics Workbench, Server and Cloud Computation

BaseSpace ad Amazon Web Service integration

Information to knowledge Data integration Metadata exploration Differential expression

 QIAGEN OmicSoft Suite, Lands, and APIs

Curated experiments

 QIAGEN OmicSoft Lands: OncoLand, DiseaseLand, Single Cell Land

- Knowledge to insight Interpretation Pathway analysis
- QIAGEN IPA

Variant interpretation

• QCI Translational, HSMD, HGMD and COSMIC

Portfolio designed to transition complex 'omics data into high-value actionable insights without the need for deep expertise

 \rightarrow

Pathway and Network Analysis

• Save time compared to traditional approach

Article types	Display Settings: [V] Summary, 20 per page, Sorted by Recent
Review	See 225 articles about GNAQ gene function
More	see also: GNAQ guanine nucleotide binding protein (G prote anag in Homo sapiens I Mus musculus I Rattus porvegicus
Text quailability	grad in <u>Homo superio</u> <u>Mas masedias</u> <u>Hatte horregistas</u>
Abstract available	Bosults: 1 to 20 of 114
Free full text available	Results. 1 to 20 01 114
Full text available	Sturge-Weber Syndrome and Port-Wine Stains Caus
	1. Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin
Publication	AM, Pevsner J.
dates	N Engl Mod. 2013 May 8. [Epub ahead of print]
5 years	Med - as supplied by publisher]

- The data generated by an experiment using a high-throughput technology (e.g., microarray, proteomics, metabolomics), along with functional annotations (pathway database) of the corresponding genome, are input to virtually all pathway analysis methods.
- ORA methods require that the input is a list of differentially expressed genes
- FCS methods use the entire data matrix as input
- PT-based methods additionally utilize the number and type of interactions between gene products, which may or may not be a part of a pathway database.
- The result of every pathway analysis method is a list of significant pathways in the condition under study.

訊聯基因數位 E Why are we using Qiagen Ingenuity Pathway analysis? QIAGEN What do they Public PDE6A relate to each SLC6A14 /commercial LPCAT1 other? database C2 CFB Drugs and REG4 **CD55** chemicals TIMP1 Your DPP10 PDIA4 PRKG2 Pathway NAT8B dataset SHISA5 LCN2 CDH3 Disease 0 ACAT1 NAALADL1 APOBEC3B NMT2 Function KYNU TMEM63C S100A11 *THE PERSON* PI3 Network CDC25B CNNM2 CHRNA1 LRRN2 RMDN2 CNTFR Machine ORA/FCS/Topology CDC14A C7orf31 What are the Pathway Analysis learning BACE2 CXCL1 relationship SLC36A1 **WDR78** between each PKM

molecules?

Publication using Qiagen Ingenuity Pathway Analysis 🏹 訊聯基因數位

J Allergy Clin Immunol. 2024 May;153(5):1268-1281. doi: 10.1016/j.jaci.2023.12.030. Epub 2024 Mar 29.

Galectin-10 in serum extracellular vesicles reflects asthma pathophysiology

proteinomics

> Chin Med. 2022 Jun 15;17(1):71. doi: 10.1186/s13020-022-00632-5.

Serum metabolomics analysis of deficiency pattern and excess pattern in patients with rheumatoid arthritis metabolomics Ingenuity Pathway Analysis is Powered by QIAGEN Knowledge Base

Ingenuity Literature Findings

Ingenuity Expert Findings – manually curated Findings from the fulltext with contextual details from top journals

Ingenuity ExpertAssist Findings – automated text Findings that are manually reviewed from abstracts covering a broader range of publications – comprise a small percentage of IPA's findings

Ingenuity Modeled Knowledge

Ingenuity Expert Knowledge – content we model such as canonical pathways, toxicity lists, etc.

Ingenuity-Supported Third-Party Information – content areas include protein-protein, miRNA, biomarker, clinical trial information and others

Databases such as COSMIC, Clinical Trials, OMIM, TargetScan, BioGRID, MGD and HumanCyc

A massive, manually curated Knowledge Base updated weekly for the last ~20 years QIAGEN Knowledge Base The Ingenuity Ontology

>**12.6** million findings

Every Connection in IPA is Backed by Literature Findings

Fully supported:

What species identifiers are accepted for analysis by IPA?

- Atlantic Salmon (Salmo salar)
- Thale cress (Arabidopsis thaliana)
- Bat (Greater horseshoe bat, *Rhinolophus ferrumequinum*)
- Ø Brewer's yeast (Saccharomyces cerevisiae)
- Cat (domestic, Felis catus)
- Chicken (Gallus gallus)
- Chimpanzee (Pan troglodytes)
- Chinese hamster (Cricetulus griseus)
- Cow (Bos taurus)
- Crab-eating macaque (Macaca fascicularis)
- Dog (Canis lupus familiaris)
- Fission yeast (Schizosaccharomyces pombe)
- Fruit fly (<u>Drosophila melanogaster</u>)
- Golden hamster (*Mesocricetus auratus*)

- ✓ Guinea pig, domestic (Cavia porcellus)
- ✓ Horse (Equus caballus)
- ✓ Human (Homo sapiens)
- ✓ Mouse (*Mus musculus*)
- ✓ Pig (Sus scrofa)
- ✓ Rabbit (Oryctolagus cuniculus)
- ✓ Rainbow trout (*Oncorhynchus mykiss*)
- ✓ Rat (*Rattus norvegicus*)
- ✓ Rhesus Monkey (Macaca mulatta)
- ✓ Roundworm (*Caenorhabditis elegans*)
- ✓ Sheep (Ovis aries)
- ✓ Western clawed frog (Xenopus tropicalis)
- ✓ Zebrafish (*Danio rerio*)

HomoloGene Release 68 (04/09/2014) Gene2accession(24/08/2023) Gene_orthologs(24/08/2023) (http://www.ncbi.nlm.nih.gov/homologene/statistics/)

Get more complete mapping during dataset upload!

Vendor IDs	Gene	Protein	Transcript	microRNA	SNP	Chemical
Affymetrix (na36)	Entrez Gene (2023/8)	GenPept	Ensembl (110)	miRbase (mature)	Affy SNP IDs	CAS Registry Number
Agilent	GenBank (257)	International Protein Index (IPI)	RefSeq (human \ mouse)	miRBase (stemloop)	dbSNP	HMDB
Life Tech (ABI)	Symbol-human (HUGO/ HGNC, EG)	UniProt/ Swiss- Prot Accession (2022_02)	UCSC (hg18)			KEGG
Codelink	Symbol- mouse (EG)		UCSC (hg19)			PubChem CID
Illumina	Symbol- rat (EG)		UCSC (hg38)			
Ingenuity	GI Number					
	UniGene					

IPA with OmicSoft Land Explorer

Genes and Chemicals Create New EGER	Diseases and Functions Pathways and Lists Datasets and Anal	lyses Advanced Search	irch 🔯		QIAGEN Land Explorer
Project Manager ×	Search Results				×
My Projects smh_miRBA CMU_Hung_RNAseq	Add To My Pathway Add To My List Create Dataset	BioProfiler Interaction Network Activi	ity Plot	# 1 - 100 (1/2) ~ 🔍 💓
Im DDARDS exosome miRNA 2 mexosome miRNA miRNA modelmatrix modelmatrix modelmatrix modelmatrix modelmatrix modelmatrix modelmatrix modelmatrix modelmatrix modelmatrix	A # Symbol Matched Term 1 EGFR EGFR, EGFR vill, EGF	Syn R1, Egfr, HER1 (EGFR) 903 EG ERI	onym(s) 30024/15RIK, C-ERBB, <mark>EGFR1</mark> , EGF receptor, <mark>EGFR vill,</mark> F-TK, epidermal growth factor receptor, ERBB, ERBB1, Errb1, RP, HER1, <mark>HER1 (EGFR)</mark> , MENA, NISBD2, PIG61, wa-2, Wa ⁴	Entrez Gene Name epidermal growth factor receptor	Location Plasma Membran
MDMC1020 Mu CGU_20221018 Mu TMU0816 Mu BIONET Mu CMUHuang			Choose	which you want	
OmicSoft Land Explorer: Sa	mple-level experimental data				
Data Type / Data Source	Normal Tissue	Cell Lines	Ongology Consortia	Oncology Studies	Disease Studies
RNA-seq expression:	Solid tissue (GTEx), Solid tissue (HPA), Blueprint	Cancer cell lines (CCLE)	TCGA, TARGET, BeatAML, ICGC, CGCI, CCLE+GTEx+TCGA, ENCODE RNA-associated gene knockdown	General oncology, Mouse studies	Human disease, Mouse disease, Rat disease
Microarray expression:	Solid tissue (GTEx)	Cancer cell lines (CCLE), Cell lines (Other)	TARGET, expO, METABRIC, CCLE+GTEx	General oncology, Metastasis, Mouse studies	Human disease, Mouse disease, Rat disease
Differential regulation:	Solid tissue (GTEx)	Treated cells (LINCS)	TCGA, TARGET, ENCODE RNA- associated gene knockdown	General oncology, Metastasis, Mouse studies	Human disease, Mouse disease, Rat disease
Alteration frequency:		Cancer cell lines (CCLE), Cell lines (Other)	TCGA, TRACERx, BeatAML, ICGC, TARGET, METABRIC	General oncology, Metastasis	
Survival by expression:			TCGA, BeatAML, TARGET, CGCI	General oncology, Clinical outcomes	
Single Cell differential regulation:	Human Cell Landscape (HCL), Tabula Sapiens			Human Disease (UMI), Human Disease (non-UMI), Mouse Disease (UMI), Mouse Disease (non-UMI)	Human Disease (UMI), Human Disease (non-UMI), Mouse Disease (UMI), Mouse Disease (non-UMI)
Protein expression:	Solid tissue (GTEx)	Cancer cell lines (CCLE)		General oncology	

IPA Gene View :OmicSoft Land Explorer

Automatically discover other IPA Core Analyses with similar (or opposite) biological results as compared to yours, to help confirm your interpretation of the results or to provide unexpected insights into underlying shared biological mechanisms

Expression A	nalysis - EEC P32 Tumor v	s Norm RPKM_1050 - 202	21-03-30 10:58 上午										– 🗆 X
Summary	Graphical Summary	Pathways Upstream	Analysis Diseases & Functions	Regulator Eff	ects Netwo	rks Lists	Analysis Match	Molecules					
Evaluate N	/letadata View As H	eatmap View Com	parison Customize Table	□ ■						z-sc.	97.12 - 35.7 (1	/703) 🗸	
	Veur							Donor		•	nalva		
Analysis Nam	ne tour	Project	' Anall/ste 🗥	<a>case.t▼×	case.t T ×	comp 🍸 ×	< comp ▼ ×	сотр т х	CP (z T × UR (z	z T × CN (z	naiys	S ⊽ z `	τ × DM (z τ ×
1358- normal	control [kidney organoid]	3-D cultu SingleCellHuma	an normal coptrol	kidney organ	3-D culture	Cluster vs Ot	nephron pro	GSE114002 UV https://www	50.00 52.09	46.90	39.95	47.23	25.79
19- normal co	™datase	RatDisease	normal control	skeletal muscle	NA	Treatment vs	TreatTime[da	GSES CALCAD GLA	55.90 45.83	38.73	47.27	46.93	15.79
671- normal o	control [bronchial epithelio	um] air liq: SingleCellHum	an normal control	bronchial epi	air liquid int	Cell Type vs	pulmonary io	GSE102580_UN https://www	55.90 48.99	30.00	51.57	46.62	13.41
654- normal o	control [bronchial epitheliu	um] air liq: SingleCellHum	an normal control	bronchial epi	air liquid int	Cluster vs Ot	pulmonary io	GSE102580_UN_bttps://www.	55.90 48.99	30.00	51.57	46.62	13.41
25- hepatoce	llular carcinoma (LIHC) [live	er] NA 116: OncoHuman	hepatocellul	liver	NA	Treatment1 v	CellLine:Infec	GSE2094	20 52.92	26.46	50.53	46.45	16.87
5349- intrahe	patic cholangiocarcinoma	[liver] 534 SingleCellHuma	an intrahepatic	liver		Cell Type vs	cytotoxic T ce	GSE142	51.12	24.49		46.28	31.02
13- normal co	ontrol [skeletal muscle] NA	8919 RatDisease	normal control	skeletal muscle	NA	Treatment vs	TreatTime[da	GSE578	57.45	30.00	6.13	45.89	15.11
3645- normal		SingleCellHum	an normal control	embryo	differentiatio	Cluster vs Ot	embryonic st	GSE131		31.62		45.81	27.78
3682- no		SingleCellHuma	an normal control	embryo	differentiatio	. Cell Type vs	empryonic st	GSEI3	56.67	31.62	44.96	45.81	27.78
8210 m		Fin ale Cell Human	disease control	arrway epith	NA	Chuster vs. Ot	samplingrim	GSE475	50.99	21.62	52.50	45.50	10.40
0219-11 20. por		BatDisease	normal control	reuna skolotal mussla	NA	Trastmont vs	TreatTimeIda	GSE164	40.00	20.00	44.06	13.20	14.42
20- mon		SingleCellHum	an osteoarthri	sveretal muscle	NA	Cluster vs. Ot	synovial r	GSE152805	100 53.85	31.62	44.50	45.16	16.44
23- por		HumanDisease	normal count	foreskin		Tuster vs Ot.	Samulat	GSE59717 GPL1 https://www.	50.00 53.96	30.00	45.10	45.02	15.61
1- prost		Metastatic	rostate ca	prostate	~	mno	ro	CSE6919	00 57.45	33.17	38.59	44.80	34.62
2- penh		HumanDisease	nenbrolithias	nanillan		лпра	Ie	F73	53.85	30.00	50.55	44.70	24.88
8878- 0		SingleCellHum	an colorectal ca	colonrectum				GSE17	58,31	33.17	37.19	44.67	33.85
1388- n		SingleCellMou	se normal control	nbryo		Cell Type vs	trophob	GSE10	56.57	22,36	6.2	43.76	13.38
10818- r		SingleCellHum	an normal control	bladder		Cell Type vs	plasma E cell	Tabula	• 54.77	22.36		43.31	26.44
216- breast		OncoHuman	breast carcin	breast	dasatinib	Treatment vs	CellLine:Trea	GSE18	43,59	20.00	47.27	43.02	8.39
1- normal cor	ntrol flung in a corol	MouseDisease	normal control	lung	NA	Treatment vs	ExperimentG	GSE44	44.91	22.36	-10100	42.89	12.46
161- lung ade	enocarcinoma (LUAD);lung	large cell SingleCellHum	an lung adenoc	lung	NA	Cell Type vs	unassigned c	E-MTA	41.46	26.46	53.59	2.88	25.93
5368- normal	control [fetal testis] 5367	SingleCellHum	an normal control	fetal testis		Cluster vs Ot	unassigned c	GSE14	61.64	47.96	61.89	42.87	21.80
23- normal co	ontrol [heart] NA 6083	RatDisease	normal control	heart	NA	Treatment vs	TreatTime:Su	GSE57800.01	30.00 42.00	36.06	42.76	42.70	12.79
3- diet induce	ed obesity [lung] NA 20248	MouseDisease	diet induced	lung	NA	Disease vs. N	DiseaseState:	GSE38092.GPLE https://www	50.00 45.83	33.57	41.26	42.66	10.20
7902- normal	control [foreskin] pellet co	ulture;TGF SingleCellHum	an normal control	foreskin	pellet culture	Cell Type vs	chondrocyte	GSE160625_UN-bH	40.82 46.00	30.00	53.59	42.60	14.20
105- normal o	control [heart] NA 2522	RatDisease	normal control	heart	NA	Other Comp	Tissue:Gend	GSE53960	48.11	28.28	43.76	42.54	10.05
7781- normal	control [foreskin] pellet co	ulture;TGF SingleCellHum	an normal control	foreskin	pellet culture	Cluster vs Ot	chondrocyte	GSE1606	50.00	26.46	42.53	42.25	20.41
6271- normal	control [embryo] different	iation me SingleCellHum	an normal control	embryo	differentiatio	Cell Type vs	chondrogeni	GSE1474	41.46	30.00		42.18	14.89
135- normal o	control [liver] cerivastatin 6	363 RatDisease	normal control	liver	cerivastatin	Treatment vs	TreatTime[da	GSE5780	45.83	26.46	46/3	42.10	8.52
7640- idiopat	hic pulmonary fibrosis [br	onchoalve SingleCellHum	an idiopathic p	bronchoalve		Cluster vs Ot	epithelial cell	GSE1593	56.57	24.49		42.06	27.33
10- non-smal	l cell lung carcinoma [lung] NA 1141 OncoHuman	non-small cel	lung	NA	Other Comp	SmokingStat	GSE1980	37.71	20.00	54.5	42.05	13.28
EEC P32 Tumo	or vs Norm RPKM - 2018-09	-28 04:03 AS123							57.45		9.47	42.04	
EEC P32 Tumo	or vs Norm RPKM - 2020-02	-13 11:12 NDMC-0212							43.59		37.52	93	
28- colon car	cinoma [colon] recombinar	nt hTGF al OncoHuman	colon carcin	colon	recombinant	Treatment1 v	CellLine:Trea	GSE105094.GP	38.38	31.62	47.27		9.24
1- normal cor	ntrol [umbilical cord vein] r	nechanica HumanDisease	normal control	umbilical cor	mechanical s	Treatment vs	Treatment:Tr	GSE17814.GPL9 http://www	61.24 43.59	26.46	35.73	41.75	7.59
EEC P32 Tumo	or vs Norm RPKM123 - 2020	0-02-14 11 NDMC-0212							86.60 42.43		37.52	41.64	
3- normal cor	ntrol [small airway epitheli	um] 3132(HumanDisease	normal control	small airway		Other Comp	. SmokingStat	GSE77658.GPL5 http://www	50.00 48.99	26.46	39.95	41.35	8.66
MetastaticMe	lanoma mRNA_vs_Normal	PMID_204 CT20190116							61.24 44.72		59.25	41.30	

Sample to Insig

QIAGEN

Analysis match

How signatures are created and compared

- Canonical Pathways (up to 20 pathways)
- Upstream Regulators (up to 100 regulators)
- Causal Networks (up to 100 master regulators)

Diseases & Functions (up to 100 diseases or functions)

Example

Mapping Your Results to OmicSoft Datasets by IPA Analysis Match

Expression Analysis - EEC P32 Tumor vs Norm RM(M_1050 - 2021-03-30 10:58 上午	n André Matela Malandar	}	·
Evaluate Metadata View As Heatmap View Comparison Customize Table	ts Analysis Match Molecules		• •
Analysis Name Y Project X case.tim. X case.tim.	compa T × compa T × weblink T Treatment1vs CellLine:Sampli GSE54329.GPL18 https://www.r Treatment1vs CellLine:Sampli GSE54329.GPL18 https://www.r Treatment1vs CellLine:Sampli GSE54329.GPL18 https://www.r Treatment1vs CellLine:Sampli GSE54329.GPL18 https://www.r Treatment1vs CellLine:Sampli GSE54329.GPL18 https://www.r Treatment1vs CellLine:Sampli GSE54329.GPL18 https://www.r Treatment1vs	 × CP (2-5 ▼ × UR (2-5 ▼ × CN (2-5 ■ 23.33) 22.36 25.90 42.43 20.00 41.23 28.28 20.00 41.23 28.28 24.49 10.00 10.00 47.96 20.00 42.43 23.60 -11.34 20.00 -11.34 20.00 42.43 22.36 -28.40 14.14 -38.38 6.32 -37.42 -24.49 -38.73 20.00 -28.40 14.14 -38.38 6.32 -37.42 -22.36 	× DE (z-s T × z-score × × D T × 11.42 12.45 9.96 9.97 9.96
Or filter using wild card search nclude: (use * for wildcard) [comma-separated list]			
comma-separated list]			
Apply Cancel			

Sample to Insight

Disease and Analysis Search

File Edit View Window Help

	Genes and Cher	micals	Diseases and Function	ons Pathways and	d Lists Datasets	and Analyses		_
Create New	human breast c	ancer					Se	arch Advanced Search
Search Results								×
Datasets and Analyses								
Search Results								
Showing first 5000 results out of 2109	904 in 23271ms for query [human breast	t cancer]				Libraries > OmicSoft >	DiseaseLand > HumanDisease > Analyses
							1- disease control lute	arine endometrium] 31423
Folder lypes							1º disease control juto	ane endometrium 51425
 <u>dataset (107832)</u> <u>analysis (103062)</u> <u>VarianLossGain (10)</u> 								
Projects							All Experiment Metao	lata
~~							case diseasestate	disease control
Open Add to Comparison	Customize Table				Crea 2023/ 202	3/ (1/125) 🗸 🔍 🔊	case.sampleids	GSM2079479;GSM2079482
		_					case.samplematerial	fresh frozen tissue
Name		Туре	√ Creation Date	case.diseasestate	case.tissue	case.treatment	c case.samplesource	uterine endometrium
colon cancer-association		dataset	2023/10/26 03:40:56				case.tissue	uterine endometrium
colon cancer-association		dataset	2023/10/24 09:00:47				comparisoncategory	Disease vs. Normal
1- [subcutaneous adipose tissue] 3271	8	analysis	2023/10/07 13:52:48		subcutaneous adipose tis		Ti comparisoncontrast	DiseaseState => disease control vs normal co
1- normal control [ovary] differentiation	1 medium 9426	analysis	2023/10/07 13:52:44	normal control	ovary	differentiation medium	comparisonid	GSE78851.GPL6244.test1
1- normal control [peripheral blood] 17	'92	analysis	2023/10/07 13:52:21	normal control	peripheral blood		comparisonindex	31423
1- normal control [peripheral blood] and	ti-CD3 antibody;anti-CD2	analysis	2023/10/07 13:51:59	normal control	peripheral blood	anti-CD3 antibody;anti-C	Ti comparisontype	glm
1- crohn's disease (CD) [colon] 30126		analysis	2023/10/07 13:51:53	crohn's disease (CD)	colon		control.diseasestate	normal control
1144- disease control [fetal primary visu	al cortex] 20567	analysis	2023/10/07 13:51:35	disease control	fetal primary visual cortex		control.sampleids	GSM2079480;GSM2079481;GSM2079483
1- disease control [uterine endometriun	n] 31423	analysis	2023/10/07 13:51:26	disease control	uterine endometrium		D control.samplemateria	fresh frozen tissue
1159- normal control [fetal neostriatum]	20583	analysis	2023/10/07 13:51:08	normal control	fetal neostriatum		Ti control.samplesource	uterine endometrium
1- type 2 diabetes mellitus [bone marrow	w] IFN gamma;TNF alpha	analysis	2023/10/07 13:50:59	type 2 diabetes mellitus	bone marrow	IFN gamma;TNF alpha	D control.tissue	uterine endometrium
132- endometriosis [uterine endometriu	ım] 17327	analysis	2023/10/07 13:50:43	endometriosis	uterine endometrium		D downregulated log2	0.202
126- normal control [peripheral blood]	33639	analysis	2023/10/07 13:50:37	normal control	peripheral blood		R cutoff	-0.205
14- multidrug-resistant tuberculosis [pe	ripheral blood] 17949	analysis	2023/10/07 13:50:20	multidrug-resistant tuberc	. peripheral blood		genemodelid	OmicsoftGenCode.V33
17- disease control [liver] recombinant h	1GGF2 34254	analysis	2023/10/07 13:50:14	disease control	liver	recombinant hGGF2	length	60699
1441- [cerebellar cortex] 20897		analysis	2023/10/07 13:49:55		cerebellar cortex		O observation_name	1- disease control [uterine endometrium] 314
17- disease control [pancreas] 31613		analysis	2023/10/07 13:49:51	disease control	pancreas		organism	human
19- multiple sclerosis (MS) [peripheral b	lood] 17040	analysis	2023/10/07 13:49:32	multiple sclerosis (MS)	peripheral blood		0 platformname	Affymetrix.HuGene-1_0-st-v1
15- disease control [internal capsule] 4	191	analysis	2023/10/07 13:49:31	disease control	internal capsule		li projectname	GSE78851
1523- disease control [primary visual con	rtex] 20988	analysis	2023/10/07 13:48:55	disease control	primary visual cortex		0 pubmed	https://pubmed.ncbi.nlm.nih.gov/?term=272
19- myelodysplastic syndrome [peripher	al blood] 6916	analysis	2023/10/07 13:48:53	myelodysplastic syndrome	peripheral blood	1	sampledatamode	Expression_Intensity_Probes
19- myotonic dystrophy type 1 [quadrice	eps femoris muscle] 10703	analysis	2023/10/07 13:48:32	myotonic dystrophy type 1	quadriceps femoris muscle		therapeuticarea	Endocrinology/Metabolism/Bone
164- normal control [peripheral blood]	1864	analysis	2023/10/07 13:48:29	normal control	peripheral blood		upregulated log2	0.1843
19- neuroblastoma [bone marrow] all-tr	ans retinoic acid (ATRA);re	analysis	2023/10/07 13:48:07	neuroblastoma	bone marrow	all-trans retinoic acid (ATR	Ti cutoff	
18- normal control [peripheral blood] p	ersistent inflammation cul	. analysis	2023/10/07 13:48:06	normal control	peripheral blood	persistent inflammation c	weblink	https://www.ncbi.nlm.nih.gov/geo/query/acc

You can also use the repository without your own analysis, just by searching for available analyses of interest.

Graphical summary

Figure 1. View Canonical Pathways with the new Bubble Chart (Volcano) option. Simply click on the drop-down menu in the Canonical Pathways tab in your Core Analysis to easily view pathways as a function of zscores vs -log p-values. This example was generated from gene expression data collected from TGF-b2-treated equine bone marrow-derived mesenchymal stem cell vs untreated samples (GSE207394). FASTQ files were reprocessed using QIAGEN RNA-Seq Portal. Note: Pathway names were added to this figure using PowerPoint.

Other software improvements

- Updated several links from Gene View to Land Explorer
- Fixed shapes and coloring for groups and complexes in Path Designer
- Fixed an issue where changing pages in the Molecules tab in Core Analyses could freeze the software
- Fixed an issue involving column titles in exported Comparison Analysis Causal Network heatmaps

With dataset	Without dataset
 Find connections in your data 	 Search and explore the QIAGEN Knowledge Base
 Identify novel biomarkers 	Test hypothesis in silico
 Uncover key targets and regulators 	 Identify degree of novelty in a hypothesis
 Discover novel disease mechanisms 	
Compare across experiments	

Create Networks from Scratch and Test Activity in Silico Š 訊聯基因數位

New My Pathway 27

Omics data type

- RNA-seq
- scRNA-seq
- Microarray
- Nanostring
- qPCR
- ChIP-seq
- Proteomics
- Metabolomics
- RNAi
- CRISPR
- WGS/WES etc.

QIAGEN IPA

										-log(p-valı	ue)							
	0.0	0.5	1.0	115	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0
IRF2-mediated Oxidative Stress Response		÷	÷			÷	÷												
PS/IL-1 Mediated Inhibition of RXR Function	8																		
enobiotic Metabolism Signaling		4	4	4	4	4	4	11	11	1	11	-	1		1		11		
lutathione-mediated Detoxification		1		1	-11		1								C.				
ryl Hydrocarbon Receptor Signaling	-																		
lutathione Biosynthesis						÷													
istamine Degradation																			

Formatting 'omics data before uploading to IPA

		Observatio	on 1	Observation	2
	А	В	С	D	E
1	geneid	UCvsNormal.Log2FoldChange	UCvsNormal.pval	52wksVedolizumabvsBaseline.Log2FoldChange	52wksVedolizumabvsBaseline.pval
2	DDX11L1	-0.1067	0.2878	0.1183	0.1624
3	WASH7P	-0.1883	0.0097	0.3063	0.0006
4	FAM138F	 -0.0761	0.4699	0.2466	0.0191
5	OR4F5	 0.1474	0.5311	0.1713	0.2913
6	LOC729737	 0.4789	0.0017	0.029	0.8331
7	LOC100133331	 0.4789	0.0017	0.029	0.8331
8	LOC100132062	 0.4789	0.0017	0.029	0.8331
9	OR4F29	0.2495	0.2389	0.2181	0.1887
10	JA429831	 0.1215	0.3338	0.2556	0.0004

Analyte identifier REQUIRED to explore enrichment

RNA examples: Gene symbols, array identifiers from Affymetrix, Ensembl, etc.

Protein examples: UniProt, GenPept, Gene symbols, Ensembl. etc.

Metabolite examples: KEGG, CAS registry number, etc. *add multiple columns of ids to ensure best mapping

Change values needed to calculate activity predictions

Change value examples: fold changes, ratios, etc.

Significance values: P-values *optional but recommended to enable filtering for significance

Accepted file formats:

- ✓ .txt (tab-delimited text files)
- ✓ .xls, .xlsx, .csv (Excel tables
- ✓ .diff (Cuffdiff output

Multiple comparisons or observations may be uploaded in one file

	IDs (required)				 Ratio, fold change, etc. (recommended)
	Ţ		↓ T	•	 Significance (optional)
A	А	В	С	D	Common protein IDs
1	Proteins	Fold change	P_value	P_value_adjust	
2	P00738	0 592740341	0.000671209	0.016736513	 Ensembl
3	P01008	0.25826353	0.000155027	0.006454004	Concertation (Entropy or UNCO)
4	P01011	0.47378079	0.000628734	0.016577608	 Gene symbols (Entrez or HUGO)
5	P04003	0.312321917	2.2507E-05	0.001618456	GenPept and GenBank
6	P06681	0.272046102	0.001374078	0.027869114	Geni epi and Genbank
7	P05155	0.429462469	4.19294E-05	0.002551241	 International Protein Index
8	P02748	0.580232999	0.002252137	0.038734209	
9	P02763	0.555940063	0.00014192	0.006236575	 UniProt and SwissProt
10	Q14520	0.368464274	9.75518E-05	0.004786156	
11	Q08380	0.536007179	0.000258392	0.009290371	
12	Q9BXR6	0.332814513	0.00075662	0.01813594	
13	P03951	0.306633696	0.000594476	0.016236342	UniProt ID conversion tool:
14	P08185	0.304349939	1.12204E-05	0.000914984	
15	P05090	0.302847519	0.000817844	0.018730825	 https://www.uniprot.org/mapping/

Formatting proteomics data before uploading to IPA

ID	s (require	ed)				 Ratio, fold change, etc. (recommended)
	Ţ			↓ T	•	 Significance (optional)
	А	В	С	D	E	Common protein IDs
1	ID	Symbol	Phospho Fold Change	Phospho p-value	Phospho Site	Common protein 123
2	IPI00137139	1700003H04Rik	-1.271	0.221	_M(ox)ET(ph)LGEK_	
3	IPI00224491	2900026A02Rik	-1.244	0.25	_RQS(ph)LYENQA_	Ensembl
4	IPI00224491	2900026A02Rik	-1.404	0.156	_SEECS(ph)PQWLK_	
-5	IPI00652957	4930594M22Rik	-5.729	5.47E-09	_MFKSS(ph)PR_	Gene symbols (Entrez or HUGO)
6	IPI00137111	4933402E13Rik	2.196	0.000423	_AWALNDS(ph)ANT(ph)SPNAWFVER_	
- 7	IPI00137111	4933402E13Rik	2.196	0.000423	_AWALNDS(ph)ANT(ph)SPNAWFVER_	ConDont and ConDonk
8	IPI00137111	4933402E13Rik	2.196	0.000423	_AWALNDS(ph)ANT(ph)SPNAWFVER_	 GenPept and GenBank
9	IPI00654190	4933431E20Rik	-1.184	0.304	VGGLS(ph)PR_	
10	IPI00654176	4933439C10Rik	-1.097	0.431	SPHLSGS(ph)LPR	 International Protein Index
11	IPI00225598	A430057M04Rik	1.079	0.299	ALPT(ph)EPR_	
12	IPI00227449	A730008H23Rik	-1.448	0.133	GM(ox)TLQWLIS(ph)PVK_	UniProt and SwissProt
13	IPI00311509	AAAS	-1.085	0.37	ITHIPLYFVNAQFPRFS(ph)PVLGR_	
14	IPI00458612	AAK1	1.07	0.311	VGSLT(ph)PPSS(ph)PKTQR	
15	IPI00458612	AAK1	1.07	0.311	VGSLT(ph)PPSS(ph)PKTQR	
16	IPI00458612	AAK1	1.057	0.332	AGQTQPNPGILPIQPALT(ph)PR	
						UniProt ID conversion tool:

Observation 1

<u>https://www.uniprot.org/mapping/</u>

QIAGEN

Formatting metabolomics data before uploading to IPA 🏹 部聯基因數位

	Multiple	ID colum	ns		Ratio, fold ch	ange, etc. (recommende	ed)		
	ſ				(optional)	Ţ	Significance (optional)			
4	A	В	С	D	E	F	G	н		
1	Pubchem	Kegg	HMDB	CAS	Metabolites	Fold change	P_value	P_value_adjust		
2					(2 or 3)-decenoate (10:1n7 or n8)	1.212936133	4.44028E-05	0.000585189		
3	6443013	C14762	HMDB0004667	29623-28-7	13-HODE + 9-HODE	0.584109411	0.003698077	0.016919182		
4	10111	C02294	HMDB01522	471-29-4	1-methylguanidine	1.219937764	0.015399637	0.049446834		
5	5462190	C15606	HMDB0012134	746507-19-7	2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA)*	1.566518315	0.002802172	0.013670263		
6	80283	C02356	HMDB00452	1492-24-6	2-aminobutyrate	0.633800292	0.011016709	0.038805594		
7	10796774		HMDB00317	488-15-3	2-hydroxy-3-methylvalerate	0.997343835	0.006172648	0.024774766		
8	11427		HMDB37115	120-91-2	2-hydroxy-4-(methylthio)butanoic acid	1.294720456	0.000305912	0.002622524		

Observation 1

Common metabolite IDs

- CAS registry number
- Human Metabolome Database
- KEGG

PubChem CID

Metabolite ID conversion tools:

- <u>https://biodbnet-abcc.ncifcrf.gov/db/db2db.php</u>
- https://cts.fiehnlab.ucdavis.edu/batch
- http://csbg.cnb.csic.es/mbrole2/conversion.php

Case study

Article

Disease-associated astrocyte epigenetic memory promotes CNS pathology

https://doi.org/10.1038/s41586-024-07187-5 Received: 2 August 2023 Accepted: 9 February 2024 Published online: 20 March 2024

Check for updates

Hong-Gyun Lee¹, Joseph M. Rone¹, Zhaorong Li^{1,2}, Camilo Faust Akl¹, Seung Won Shin³. Joon-Hyuk Lee¹, Lucas E. Flausino¹, Florian Pernin⁴, Chun-Cheih Chao¹, Kilian L. Kleemann⁵, Lena Srun¹, Tomer Illouz¹, Federico Giovannoni¹, Marc Charabati¹, Liliana M. Sanmarco¹, Jessica E. Kenison¹, Gavin Piester¹⁶, Stephanie E. J. Zandee⁷, Jack P. Antel⁴, Veit Rothhammer^{1,8}, Michael A. Wheeler^{1,2}, Alexandre Prat⁷, Jain C. Clark³ & Francisco J. Quintana12.9

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY⁺p300⁺ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY*p300* astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.

nervous system (CNS) that have important functions in health and disease⁹⁻¹¹. Astrocytes participate in key processes that are relevant to CNS other cell types^{20,21} undergo metabolic, epigenetic and transcriptional development and homeostasis⁹. In addition, cytokines, interactions adaptations upon stimulation that alter their subsequent responses, with CNS-resident and CNS-recruited immune cells, and other factors trigger astrocyte responses with important roles in CNS pathology^{10,12,13}. Indeed, several astrocyte subsets have been described in neurologic diseases¹⁴⁻¹⁶. For example, we and others have interrogated astrocyte functional heterogeneity in multiple sclerosis and EAE^{I-8}. However, the stability of these disease associated astrocyte subsets is unclear, an important point when considering lifelong chronic neurologic diseases such as multiple sclerosis

Astrocytes are abundant non-haematopoietic cells of the central of adaptive immunity driven by long-lived antigen-specific T cells and B cells17. In addition, innate immune cells including myeloid cells18,19 and boosting protective immunity against pathogens but also contributing to pathogenic inflammation²². Although memory T cells and B cells have been identified, our understanding of innate immune or non-haematopoietic cell memory subsets remains limited. In this context, it is still unknown whether astrocytes display altered responses to repeated stimulation, how these responses are regulated, and whether specific astrocyte subsets are involved.

Here we describe a memory astrocyte subset controlled by epigenetic Immunological memory, the generation of faster and stronger changes driven by ACLY- and p300-dependent histone acetylation, responses upon repeated antigenic stimulation, is a classic hallmark which, following an initial stimulation, display faster and stronger

¹Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. ²Broad Institute of MIT and Harvard, Cambridge, MA, USA. ³Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences, QB3, University of California Berkeley, Berkeley, CA, USA, ⁴Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada. School of Computing, University of Portsmouth, Portsmouth, UK. "Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA. "Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada. ⁶Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany, °Gene Lay Institute of Immunology and Inflammation, Boston, MA, USA. Re-mail: fquintana@rics.bwh.harvard.edu

Nature | Vol 627 | 28 March 2024 | 865

Upload Dataset

IDs (required)

Gene	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
Agt	1491.232879	-2.142039506	0.141144271	-15.17624121	5.08E-52	7.63E-48
Itih3	2800.342725	-1.829055197	0.12670859	-14.43513186	3.11E-47	2.34E-43
Slc6a11	1045.429999	-1.985783121	0.146117825	-13.59028658	4.57E-42	2.29E-38
Htral	3225.867947	-1.74990959	0.135037058	-12.95873609	2.10E-38	7.87E-35
Atp1b2	9206.462111	-1.377310491	0.110602053	-12.4528474	1.35E-35	4.05E-32
Slc7a10	1390.240591	-1.555116445	0.129765072	-11.98409111	4.31E-33	1.08E-29
Wnt7b	342.5214859	-1.96986571	0.16835759	-11.70048654	1.27E-31	2.72E-28
Slc6a1	4085.769821	-1.760055345	0.151622108	-11.6081709	3.75E-31	7.03E-28
Cers1	456.2308211	-1.980288255	0.170826017	-11.59242775	4.50E-31	7.51E-28

Volcano Plot

Volcano

AGT

ITIH3

Create Expression Analysis - [analysis : astrocyte_2IL-1B+TNF_vs_1IL-1B+TNF_bulk RNA]

Set Cutoffs Biological Filters

Use cutoffs to select a set of molecules from your dataset to analyze. Ideally choose between 100 and 3000 significantly regulated molecules, and not more than 8000. Include *both* up-regulated and down-regulated, if possible, to obtain causal predictions.

55

50

Core analysis – Graphical Summary

astrocyte_2IL-1B+TNF_vs_1IL-1B+TNF_bulk RNA - 2024-07-09 04:00 🗆 Summary Graph

© 2000-2024 QIAGEN. All rights reserved.

Analysis: astrocyte_2IL-1B+TNF_vs_1IL-1B+TNF_bulk RNA - 2024-07-09 04:00 下午

Analysis: astrocyte_2IL-1B+TNF_vs_1IL-1B+TNF_bulk RNA - 2024-07-09 04:00 下午

positive z-score _ z-score = 0 = negative z-score = no activity pattern available

© 2000-2024 QIAGEN. All rights reserved.

QIAGEN

Analysis Match

Expression Analysis - astrocyte_2IL-1B+TNF_vs_1IL-1B+TNF_bulk RNA - 202 astrocyte_2IL-1B+TNF_vs_1IL-1B+TNF_bulk RNA - 2024-07-09 04:00

- 🗇 ×

Summary Graphical Summary Pathways Ups	stream Analysis		-								
		Activation z-score	55.054								
Evaluate Metadata View As Heatmap View	w Comparison	-6.487	55.254				DM (30.1640908	999230 (1/7	7) 🗸 <	» 🕟 🛛
Analysis Nama T Project	T X caso T X	\$			S (тх				7-6 T X	— T X
Analysis Name Toject Alzheimer's disease (AD) [brain] NA 7020 MouseDisease	Alzhoimor's				B+ Tosi Tosi Tosi Tosi Tosi	• • •	60.92	24.64	77.25	E4.26	27.07
<u>6- Alzheimer's disease (AD) Ibraini NA 7920</u> MouseDiseas	se Aizneimers			D.	IL-1 Scler Scler Scler Scler Scler	12	64.81	26.46	70.71	54.50 40.40	27.97
4- Inontotemporal lobal degeneration (FTED) [DI ModseDisea				ame	e ole sole sole sole sole sole sole sole		46.00	26.46	75.12	37.10	25.90
5 ischomis stroke (brain) NA 2622 MouseUisea	NA 7920 lai cont				ocyt ultig ultig ultig		69.28	33.17	62.22	41 17	25.00
3- ischemic stroke [brain] NA 2616 MouseDisea	se ischemic str						74.16	36.06	65.99	44.05	24.32
6- frontotemporal Johar degeneration (ETLD) [b] MouseDisea	se frontotempo			DM Analysis ready gapos		20	64.03	30.00	64.76	52.20	23.46
2- ischemic stroke [brain] NA 20690 MouseDisea	se ischemic str			CN CDT14		50	60.00	30.00	01.10	22.50	23.45
6- anyotrophic lateral sclerosis (ALS) [brain] line MouseDisea	se amvotrophic			CN ICKT14			67.82	28.28	64 76	40.22	23.20
26- normal control [brainstem] NA 18503 MouseDisea	se normal.cont						-13.42	20.20	01110	-3 35	23.08
7- anyotrophic lateral sclerosis (ALS) [brain] PBS MouseDisea	se amvotrophic.		Ч	CN LARP1		72	44.72	30.00	72.96	48.10	22.65
9- normal control [brain] lipopolysaccharide (LPS MouseDisea	se normal cont		,	UR LARP1		00	68.56	24.49	63.50	51.64	22.44
4- ischemic stroke [brain] NA 16895 MouseDisea	se ischemic str		h	UR IRF2BP2			68.56	42.43	69.56	45.14	22.41
2- stroke [brain] NA 22744 MouseDisea	se stroke		L,	UR ST1926			73.48	31.62	71.84	44.24	22.23
1- Alzheimer's disease (AD) [brain] NA 22551 MouseDisea	se Alzheimer's	.	4	UR SP600125			60.83	28.28	56.80	36.48	21.73
28- normal control [brainstem] NA 18505 MouseDisea	se normal cont		r	UR sirolimus			-20.00			-5.00	21.72
5- Alzheimer's disease (AD) [brain] NA 24208 MouseDisea	se Alzheimer's	.	4	CN GRIN2A			52.92		25.40	19.58	21.70
1- stroke [brain] NA 22743 MouseDisea	se stroke	11 4		CP Xenobiotic Metabolism PXR Sig			75.50	26.46	64.76	41.68	21.54
11- amyotrophic lateral sclerosis (ALS) [brain] lip MouseDisea	se amyotrophic.		l	CP FXR/RXR Activation			69.28	30.00	69.56	42.21	21.49
5- Alzheimer's disease (AD) [brain] NA 12291 MouseDisea	se Alzheimer's	.	r	CP Dermatan Sulfate Biosynthesis			57.45	30.00	53.88	35.33	21.35
7- experimental autoimmune encephalomyelitis MouseDisea	se experimenta.	.	ų	UR SB203580		0C	69.28	28.28	71.84	54.85	20.27
3- ischemic stroke [brain] NA 10034 MouseDisea	se ischemic str			UR let-7a-5p (and other miRNAs w/			58.31	31.62	56.80	36.68	20.26
10- ischemic stroke [brain] NA 2595 MouseDisea	se ischemic str		1	UR TREX1			70.71	38.73	69.56	44.75	19.91
14- normal control [brain] PBS 8739 MouseDisea	se normal cont		r	CP Neurovascular Coupling Signali			17.32	22.36	60.91	25.15	19.90
1- ischemic stroke [brain] NA 10031 MouseDisea	se ischemic str		_	CP Phase L - Eunctionalization of co			24.49		31.11	13.90	19.76
1- ischemic stroke [brain] NA 20255 MouseDisea	se ischemic str		r				69.28	40.00	56.80	41.52	19.71
12- amyotrophic lateral sclerosis (ALS) [brain] PB MouseDisea	se amyotrophic.			CN secondalia			17.32		53.88	17.80	19.53
4- Alzheimer's disease (AD) [brain] NA 12290 MouseDiseas	se Alzheimer's						58.31	33.17	58.20	37.42	19.38
3- ischemic stroke [brain] NA 16894 MouseDisea	se ischemic str		r	UK ILTUKA			67.82	31.62	63.50	40.74	19.34
9- experimental autoimmune encephalomyelitis MouseDisea	se experimenta.			CN FA2H			70.00	20.00	65.99	39.00	18.88
13- normal control [brain] lipopolysaccharide (LF MouseDisea	se normal cont	. 1. 1	1	CN quinalphos			64.03	24.49	69.56	39.52	18.80

Overview of unimodal analysis steps for scRNA-seq 💐 訊聯基因數位

a Preprocessing and visualization

Heumos, L., Schaar, A.C., Lance, C. *et al.* Best practices for single-cell analysis across modalities. *Nat Rev Genet* 24, 550–572 (2023). https://doi.org/10.1038/s41576-023-00586-w 66580 Comprehensive single-cell RNA-seq analysis with Qiagen Digital Insights ്款聯基因數位

QIAGEN

Publication of Single-cell RNA Seq and Qiagen IPA

訊聯基因數位

ē

10

Article

Disease-associated astrocyte epigenetic memory promotes CNS pathology

https://doi.org/10.1038/s41586-024-07187-5 Received: 2 August 2023 Accepted: 9 February 2024 Published online: 20 March 2024

Check for updates

ioon-Hyuk Lee¹, Lucas E. Flausino¹, Florian Pernin⁴, Chun-Cheih Chao¹, Kilian L. Kleemann⁵ Lena Srun¹, Tomer Illouz¹, Federico Giovannoni¹, Marc Charabati¹, Liliana M. Sanmarco¹. Jessica F. Kenison¹ Gavin Piester¹⁶ Stephanie F. J. Zandee⁷ Jack P. Antel⁴ Veit Rothhammer¹⁸, Michael A. Wheeler¹², Alexandre Prat⁷, Iain C. Clark³ & Francisco J. Quintana^{1,2,9}

> Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY*p300* memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY*p300* astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.

Hong-Gyun Lee¹, Joseph M. Rone¹, Zhaorong Li^{1,2}, Camilo Faust Akl¹, Seung Won Shin³,

Astrocytes are abundant non-haematopoietic cells of the central of adaptive immunity driven by long-lived antigen-specific T cells and E nervous system (CNS) that have important functions in health and discells¹². In addition, innate immune cells including myeloid cells^{18,19} and ease^{9-II}. Astrocytes participate in key processes that are relevant to CNS other cell types^{20,21} undergo metabolic, epigenetic and transcriptiona development and homeostasis⁹. In addition, cytokines, interactions adaptations upon stimulation that alter their subsequent response with CNS-resident and CNS-recruited immune cells, and other factors boosting protective immunity against pathogens but also contribtrigger astrocyte responses with important roles in CNS pathology^{10,12,13}. Indeed, several astrocyte subsets have been described in neurologic diseases¹⁴⁻¹⁶. For example, we and others have interrogated astrocyte non-haematopoietic cell memory subsets remains limited. In this con functional heterogeneity in multiple sclerosis and EAE¹⁻⁸. However, the text, it is still unknown whether astrocytes display altered responses to stability of these disease-associated astrocyte subsets is unclear, an repeated stimulation, how these responses are regulated, and whether important point when considering lifelong chronic neurologic diseases such as multiple sclerosis.

uting to pathogenic inflammation²². Although memory T cells and B cells have been identified, our understanding of innate immune specific astrocyte subsets are involved

Here we describe a memory astrocyte subset controlled by epigenet Immunological memory, the generation of faster and stronger changes driven by ACLY- and p300-dependent histone acetylation responses upon repeated antigenic stimulation, is a classic hallmark which, following an initial stimulation, display faster and stronge

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. Broad Institute of MIT and Harvard, Cambridge, MA, USA Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences, QB3, University of California Berkeley, Berkeley, CA, USA. *Neuroimmunology Uni Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada. "School of Computing, University of Portsmouth, DK Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA. 7Neuroimmunology Research Lab, Centre de Recherche du Centre Hospita de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada. *Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany. Gene Lay Institute of Immunology and Inflammation, Boston, MA, USA. Re-mail: fquintana@rics.bwh.harvard.edu

Nature | Vol 627 | 28 March 2024 | 865

Cluster 2: ACLY-EP300-NF-kB signalling network

Upload dataset

Gene (Cluster2)	p_val a	avg_log2FC po	ct.1 p	oct.2 p	_val_adj
NRG3	1.32E-305	-1.830005156	0.397	0.949	8.17E-301
NPAS3	7.05E-296	-1.839575152	0.408	0.943	4.37E-291
LSAMP	5.25E-293	-2.01656665	0.422	0.931	3.25E-288
CTNNA2	1.88E-271	-2.181013296	0.297	0.877	1.16E-266
NTM	6.71E-269	-2.035792883	0.298	0.867	4.16E-264
LRP1B	2.07E-260	-1.862702776	0.364	0.906	1.28E-255
PCDH9	2.58E-258	-1.859367557	0.478	0.929	1.60E-253
ARHGAP15	1.28E-251	2.373274094	0.195	0.016	7.93E-247
RORA	4.58E-250	-1.758555994	0.369	0.896	2.84E-245
ADGRV1	3.05E-238	-2.01271719	0.202	0.801	1.89E-233
MIR99AHG	7.94E-230	-1.561175631	0.335	0.881	4.92E-225
ERBB4	1.14E-227	-2.089206464	0.251	0.798	7.07E-223
SKAP1	1.94E-226	1.815816958	0.12	0.005	1.20E-221
IGHGP	3.49E-224	4.478920506	0.186	0.017	2.17E-219
FTL	4.63E-224	2.728374402	0.733	0.432	2.87E-219
PTPRC	5.67E-222	2.315334346	0.189	0.018	3.51E-217
B2M	1.71E-219	2.642053778	0.508	0.163	1.06E-214
IGKC	1.08E-215	5.282442767	0.383	0.087	6.67E-211
CTNND2	2.72E-209	-1.362521536	0.424	0.917	1.68E-204
AC092691.1	2.79E-209	-1.979973814	0.188	0.755	1.73E-204
SOX5	4.74E-205	-1.573780235	0.294	0.83	2.94E-200
GPM6A	1.48E-204	-1.594303141	0.477	0.901	9.15E-200
CDH20	1.06E-203	-1.777170098	0.237	0.789	6.57E-199
IKZF1	9.59E-194	1.327121919	0.105	0.005	5.94E-189
DTNA	2.25E-192	-1.359734836	0.438	0.913	1.40E-187
PITPNC1	9.50E-190	-1.462155705	0.374	0.871	5.89E-185
MAGI2	2.14E-189	-1.298900114	0.376	0.876	1.32E-184
MAPK10	1.30E-187	-1.447131759	0.246	0.797	8.03E-183
GPC5	1.84E-187	-2.80772988	0.139	0.647	1.14E-182

Upload dataset

😹 IPA File Edit View Window Help Dataset Upload - scRNA cluster2 in MS sample.xlsx Genes and Chemicals Diseases and Functions Pathways and Lists Datasets and Analyses 1. Select File Format: Flexible Format \sim 0 Create New... Glycation Signaling Pathway 2. Contains Column Header: Yes No Core Analysis... 3. Select Identifier Type: Please assign at least one column below as "ID", and assign the identifier type(s). х Comparison Analysis... Assign additional columns as ID to improve mapping coverage if desired. h Create Core Analysis Biomarker Filter... 4. Array platform used for experiments: Not specified/applicable Select relevant array platform as a reference set for data analysis. Upload Biomarker Comparison Analys 5. Use the dropdown menus to specify the column names that contain identifiers and observations. For observations, select the appropriate measurement value type 3 MicroRNA Target Filter... V My Projects > case_study **BioProfiler** Raw Data (2227) Dataset Summary (2138) Metadata > CGUST IsoProfiler CCGH 2 > CCGH Edit Observation Names Infer Observations 0 My Pathway > smh_miRBA Path Designer ID avg_log2FC avg_log2FC avg_log2FC lanore lanore > CMU_Hung_RNAseq \vee ID/Observation Name » 長庚ARDS Filter Dataset Expr p-value Expr Log Ra... Expr False Disc... > exosome miRNA 2 Upload Dataset. Measurement/Annotation > exosome miRNA Gene Symb... N Advanced Search > 2023-demo p_val_adj Gene (Cluster2) p_val avg_log2FC > Isoform O Project... NRG3 1.3173757859959799E-305 -1.83000515560927 . 8.1666759725462499E-30.. > HTCH_Dr.Liu_2022-12-16 Compare > NDMC1020 NPAS3 7.0489653119760105E-296 -1.83957515191841 4.3697945762001696E-29.. > CGU_20221018 LSAMP -2.01656664988622 .42199999999999999.0.931000000000000. 3.2518252959368299E-28. Import Pathway 5.2455563555568897E-293 TMU0816 1.8775881114991201E-271 CTNNA2 -2.181013295991519.. 1.16395442208053E-266 > BIONET somatic_mutatiion_sclc NTM -2.035792883172120... 4.1592130606462598E-26 6.7092738750907603E-269 > CMUHuang DEP for CM LRP1B 2.0674625254523701E-260 -1.862702776075789. 1.28166136877843E-255 > AJpharm data unique sharm24hrs PCDH9 -1.859367556582709. ... 1.5980166756041201E-25. NDMC 2.5777788676024698E-258 🗎 trama data unique 2.3732740939202501 7.9263945163456803E-24. ARHGAP15 1.2786157111152499E-251 Next GSE73661-UC VDZ with pval RORA 4.5845629743262398E-250 -1.75855599429056 ... 2.8420622790443201E-24 Check out the single cell expression tutorial. Case studies and Support webinars 11 ADGRV1 3.05258253880142E-238 -2.012717190081460... 1.8923569674537701E-23 Read and watch our gene expression tutorial 12 MIR99AHG 7.9360358445861602E-230 -1.561175631304589... ... 4.9197073407758501E-22.. 13 ERBB4 1.13973178489342E-227 -2.08920646442875 7.0654252809112898E-22 Top help articles and FAQs If you are new to IPA or taking a trial please s 14 1.93722344511261E-226 1.20092355809421E-221 SKAP1 1.8158169580191501 Pave your way to greatness using advanced 15 IGHGP 3.4935346663511102E-224 4.4789205060341004 Contacting Support Read our news and sign up for our newsletter 16 FTL 4.6282875922265899E-224 2.7283744015825602 2.8691680441731E-219 Search Google Scholar for publications that of 17 PTPRC 5.6652990558793402E-222 2.3153343455578299 ... 3.5120321907207201E-21 Shortcuts 18 B2M 1.70915046007387E-219 2.6420537775063999).. 1.059536553209E-214 ... 6.6744736152998403E-21.. 19 IGKC 1.07666692723252E-215 5.2824427674733396

Core Analysis

😹 IPA										_	
File Edit View W	indow Help								Provide Feedback	Support Gene	e Chen Close IPA
	Genes and Chemicals	s Diseases a	and Functions Pathways	and Lists Dat	asets and Analyses						
Create New	Glycation Signaling P	athway				Search	Advanced Search				QIAGEN
Annotated Dataset: so	RNA_cluster2_in_MS_sa	mple									- 0 >
Preview Dataset scRN	IA_cluster2_in_MS_sam	ple									
Mapped IDs (2138)	Unmapped IDs (88)	All IDs (222	Create Core Analysis					×			
			Selected Dataset: scRNA_o	luster2_in_MS_sa	mple			0			
Add To My Pathw	Add To My List	Create D	Based on this dataset, wh	ich Core Analysis	type would you like to run?	•			Symbol AASS - AOP	EP (1/22)	✓ 《 》
Expr p-value	🗵 Expr Log Ratio	🗵 Expr Fals	Expression Analysis	\sim				1	🗵 Type(s)	🗵 Drug(s)	×
4.61E-36	-0.690	2.86E-31						n	enzyme		
8.42E-36	-0.626	5.22E-31	On which measurement ty	vpe would you lik	e to base the analysis?			embrane	transporter	probucol	
1.30E-01	0.502	1.00E00	Expr Log Ratio	\sim	This measurement will be	used to calculate		embrane	transporter		
2.41E-30	-0.497	1.49E-25	Expr Eog Natio		directionality (z-scores) in	the analysis and w	rill be	embrane	ion channel		
2.58E-34	-0.339	1.60E-29			displayed in color on path	ways and network	s. If you	n	other		
2.66E-33	-0.393	1.65E-28			choose a non-directional	measurement (e.g.	p-value)	n	other		
6.64E-20	-0.318	4.11E-15			then z-scores will not be c	alculated.		lar Space	other		
7.58E-158	-1.308	4.70E-153						n	other		
7.50E-35	-0.281	4.65E-30						n	other		
7.96E-29	-0.427	4.93E-24						n	enzyme		
8.28E-59	-0.832	5.13E-54						n	enzyme		
1.53E-24	-0.264	9.50E-20						n	other		
3.40E-05	0.345	1.00E00						n	enzyme		
1.83E-83	-1.216	1.13E-78						n	enzyme		
5.08E-24	-0.476	3.15E-19						n	phosphatase		
4.67E-44	-0.829	2.90E-39						n	enzyme		
3.48E-27	-0.401	2.16E-22						n	enzyme		
5.47E-24	-0.688	3.39E-19	Back					Next n	enzyme		
5.55E-43	-0.653	3.44E-38	ACSS1		AC	SS1	acyl-CoA synthetase sho	. Cytoplasm	enzyme		
1.67E-72	-1.007	1.04E-67	ACSS3		AC	SS3	acyl-CoA synthetase sho	. Cytoplasm	enzyme		
1.72E-149	2.214	1.06E-144	ACTB		AC	ТВ	actin beta	Cytoplasm	other		
9.52E-112	2.301	5.90E-107	ACTG1		AC	TG1	actin gamma 1	Cytoplasm	other		
6.57E-02	0.436	1.00E00	ACTN4		AC	TN4	actinin alpha 4	Cytoplasm	transcription regul	ator	
8.44E-01	0.499	1.00E00	ACTR2		AC	TR2	actin related protein 2	Plasma Membrane	other		
6.89F-01	0.393	1.00E00	ACTR3		AC	TR3	actin related protein 3	Plasma Membrane	other		
0/2138											

Flags:

"D" - Duplicates. Gene/Protein/Chemical identifiers marked with an asterisk indicate that multiple identifiers in the dataset file map to a single gene/chemical in the Global Molecular Network.

"O" - Override molecules. Gene/Protein/Chemical identifiers marked as "Override" are displayed with italic text.

"A" - Gene/Protein/Chemical ID marked as Absent. The gene/protein/chemical will not be used as a focus molecule or appear in networks unless you also explicitly override this flag with the Override column.

Create Expression Analysis - [analysis : Set Cutoffs Biological Filters Use cutoffs to select a set of molecus significantly regulated molecules, and	scRNA_cluster2_in_MS_sample] ules from your dataset to analyze. Ideally choose between 10 nd not more than 8000. Include <i>both</i> up-regulated and dowr	10 and 3000 n-regulated, if possible, to	Three Step1. Set Cutoff2. Biological Filter3. Run Analysis
obt: Create Expression Analysis - [analysis : sch Set Set Cutoffs Biological Filters	RNA_cluster2_in_MS_sample]		- C - ×
Dat. p_va > General Settings ? Avg, Networks Interaction & Ca ? Avg, Node Types biologic drug ? Data Sources All ? ? Data Sources All ? ? Species Human ? ? Tissues & Cell Lines ? ? Ad Save As Default ?	Population of genes to consider for p-value calculations: Reference Set Ingenuity Knowledge Base (Genes Only) Relationships to consider: Affects networks and upstream regulator analysis Direct and Indirect Relationships Direct Relationships 	Optional Analyses: My Project My Pathways My Lists	Analysis Filter Summary Consider only molecules and/or relationships where (species = Human) AND (confidence = Experimentally Observed) AND (mol. types = biologic drug OR canonical pathway OR chemical - endogenous mammalian OR chemical - endogenous non-mammalian OR chemical - endogenous non-mammalian OR chemical - endogenous non-mammalian OR chemical - protease inhibitor OR chemical - other OR chemical - protease inhibitor OR chemical drug OR chemical reagent OR chemical toxicant OR complex OR cytokine OR disease OR enzyme OR function OR G-protein coupled receptor OR group OR growth factor OR ion channel OR kinase OR ligand-dependent nuclear receptor OR mature microRNA OR microRNA OR other OR peptidase OR phosphatase OR related pathway node OR transcription regulator OR translation
Prev Advanced Sample to unsugn	Recalculate 793 analysis-ready molecules (494 Down and 299 Up)		Run Analysis

Core analysis – Canonical pathway

44480

Analysis: scRNA_cluster2_in_MS_sample - 2024-07-15 06:09 下午 ■ scRNA_cluster2_in_MS_sample - 2024-07-15 06:09 下午

© 2000-2024 QIAGEN. All rights reserved.

© 2000-2024 QIAGEN. All rights re

nature communications

Article

https://doi.org/10.1038/s41467-023-40271-4

Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response

Received: 31 October 2022	Rohit Arora ¹¹⁶ , Christian Cao ^{12,16} , Mehul Kuma ^{1,3} , Sarthak Sinha ¹⁰ , Ayan Chanda ^{0,13} , Reid McNeil ^{1,2} , Divya Samuel ^{1,3} , Rahul K. Arora ¹⁰ , ^{5,6} , T. Wayne Matthews ^{1,6} , Shamir Chandrana ^{7,4} , Robert Hart ^{7,4} , Joseph C. Dort ^{3,7,8,9} ,					
Accepted: 19 July 2023						
Published online: 18 August 2023	Jeff Biernaskie ^{4,10,11,12} , Paola Neri ^{3,13} , Martin D. Hyrcza ^{3,14} & Pinaki Bose 🕲 ^{1,3,6,15}					
Check for updates						
	The spatial organization of the tumor microenvironment has a profound impact on biology and therapy response. Here, we perform an integrative single-cell and spatial transcriptomic analysis on HPV-negative oral squamous cell carcinoma (OSCC) to comprehensively characterize malignant cells in tumor core (TC) and leading edge (LE) transcriptional architectures. We show that the TC and LE are characterized by unique transcriptional profiles, neighboring cellular compositions, and ligand-receptor interactions. We demonstrate that the gene expression profile associated with the LE is con- served across different cancers while the TC is tissue specific, highlighting common mechanisms underlying tumor progression and invasion. Addition- ally, we find our LE gene signature is associated with worse clinical outcomes while TC gene signature is associated with improved prognosis across multiple cancer types. Finally, using an in silico modeling approach, we describe spatially-regulated patterns of cell development in OSCC that are predictably associated with drug response. Our work provides pan-cancer insights into TC and LE biology and interactive spatial atlases (http://www.pboselab.ca/spatial_ OSCC/; http://www.pboselab.ca/dynamo_OSCC/) that can be foundational for developing novel targeted therapies.					

¹Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada. ²Termerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada. ³Annie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. ⁴Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada. ⁵Department of Comparative Biology and Experimental Medicine, Encluty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada. ⁵Center for 6 Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. ⁵Department of Canada. ⁵Department of Calgary, Calgary, AB, Canada. ⁵Department of Calgary, Calgary, AB, Canada. ⁵Department of Calgary, Calgary, AB, Canada. ⁵Department of Sturojery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. ⁵Department of Pathology and Laboratory Medicine, University of Calgary, Canada. ⁵Department of Pathology, Calgary, Calgary, AB, Canada. ⁵Division of Hematology, Department of Oncology, University of Calgary, Calgary, AB, Canada. ⁵Department of Pathology, Calgary, Calgary, Calgary, Calgary, AB, Canada. ⁵Department of Pathology, Calgary, Calgary, Calgary, Calgary, AB, Canada. ⁵Department of Pathology, Calgary, Calgary, Calgary, Calgary, AB, Canada. ⁵Department of Pathology, Calgary, Calgary, Calgary, Calgary, AB, Canada. ⁵Department of Pathology, Calgary, Calgary, Calgary, Calgary, AB, Canada. ⁵Department of Pathology, Calgary, Calgary, Calgary, Calgary, Calgary, AB, Canada. ⁵Department of Pathology, Calgary, Calgary, Calgary, AB, Canada. ⁵Department of Pathology, Calgary, Ca

Nature Communications | (2023)14:5029

12 slides processed with 10X Visium Spatial Transcriptomics (ST)

Data Format

avg_log2FC	p_val_	_adj
2.706423338		0
2.654346543		0
2.579461176		0
2.520689273		0
2.449394678		0
2.414710712		0
2.390169921		0
2.342349982		0
2.340477642		0
2.260580342		0
2.194651151		0
2.173298475		0
2.097040487		0
2.082024046		0
2.027716246		0
2.017865872		0
	avg_log2FC 2.706423338 2.654346543 2.579461176 2.520689273 2.449394678 2.414710712 2.390169921 2.342349982 2.340477642 2.260580342 2.194651151 2.173298475 2.097040487 2.082024046 2.027716246 2.017865872	avg_log2FC p_val 2.706423338 2.654346543 2.579461176 2.520689273 2.449394678 2.414710712 2.390169921 2.342349982 2.340477642 2.260580342 2.194651151 2.173298475 2.097040487 2.082024046 2.027716246 2.017865872

avg_log2FC	p_val_adj
1.119188557	0
1.077456695	0
1.047688083	0
1.040462139	0
0.98234798	0
0.916656628	0
0.902377431	0
0.87526439	0
0.791542974	0
0.778830913	0
0.716862936	0
0.653061976	0
0.612219081	0
0.546409497	0
0.472353201	0
0.668868409	9.25E-299
	avg_log2FC 1.119188557 1.077456695 1.047688083 1.040462139 0.98234798 0.916656628 0.902377431 0.87526439 0.791542974 0.778830913 0.716862936 0.653061976 0.612219081 0.546409497 0.472353201 0.668868409

File Edit View Window Help

Create New Core Analysis Comparison Analysis Biomarker Filter Biomarker Comparison Analysis MicroRNA Target Filter BioProfiler	× A-Z Sort Refresh	Search Advanced Search	 Select File Format: Contains Column Header: Select Identifier Type: 	Flexible Format Image: Comparison of the second
Core Analysis Comparison Analysis Biomarker Filter Biomarker Comparison Analysis MicroRNA Target Filter BioProfiler	A-Z Sort Refresh		 Contains Column Header: Select Identifier Type: 	Yes No Please assign at least one column below as "ID", and assign the identifier type(s).
Comparison Analysis Biomarker Filter Biomarker Comparison Analysis MicroRNA Target Filter BioProfiler	A-Z Sort Refresh		3. Select Identifier Type:	Please assign at least one column below as "ID", and assign the identifier type(s).
Biomarker Filter Biomarker Comparison Analysis MicroRNA Target Filter BioProfiler	A-Z Sort Refresh			
Biomarker Filter Biomarker Comparison Analysis MicroRNA Target Filter BioProfiler	A-Z Sort Refresh			Assign additional columns as ID to improve mapping coverage if desired.
Biomarker Comparison Analysis MicroRNA Target Filter BioProfiler			4. Array platform used for experiments	S: Not specified/applicable Select relevant array platform as a reference set for data analysis.
MicroRNA Target Filter BioProfiler			E Use the drendeur menus to specifi	the column names that contain identifies and observations. For observations, select the conventions measurement value to an
BioProfiler	Create Core Analysis	×	5. Ose the dropdown menus to specily	the column names that contain identifiers and observations, ror observations, select the appropriate measurement value type.
las Des Class			Deve Dete (262) Detect Surrent	
IsoProfiler	2		Kaw Data (505) Dataset Summary	(500) Metadata
My Pathway	ML _ cNC ~ My Projects	. 3	Edit Observation Names	er Observations
Path Decigner	genome > case_study			
Factoresigner	x - 2024- > CGUST		ID/Observation Name	v avg_log2FC v avg_log2FC v
Filter Dataset	4-05-16 CCGH_2			Expr Log Ra V Expr p-value V
Upload Dataset	lc - 202· > CCGH		Measurement/Annotation	umb v
Advanced Search	4-26 02: > smh_miRBA	•	Gene sy	
Project	RNA_mF > CMU_Hung_RNAseq		I gene	avg.log2rC p_val_adj
Compare	_mRNA · 》 長庚ARDS		3 SDDD2F	2,6543465420000000 0
Import Pathway	2024-04 > exosome miRNA 2		4 DFFB4A	2579461176000001 0
import Fatiway	4hrs - 20 > exosome miRNA	38	5 SPRR2A	2.5206892729999999 0
Frama_data_uniqu	e - 2024-04 >> 2023-demo	a second distance of the second	6 LCN2	2,449394678 0
> 🗎 GSE73661-UC VD2	with pval > Isoform		7 CRCT1	2.4147107120000002 0
Nature_comm_202	0_germlin > HTCH_Dr.Liu_2022-12-16		8 SLURP2	2.390169921 0
Sature_comm_202	0_germline > NDMC1020	tal datasets ar	9 CNFN	2.342349982 0
	> CGU_20221018		10 SLURP1	2.3404776420000002 0
	TMU0816		11 S100A7	2.2605803419999999 0
	> BIONET		12 SPRR3	2.194651151 0
	> CMUHuang		13 SPRR2B	2.1732984750000002 0
	> AJpharm		14 KLK13	2.0970404870000001 0
	NDMC	ımer release i	15 LCE3D	2.0222162450000000 0
		Next day, June 30, 12 p	17 KLK0	2017865871000008 0
		Central European summer time: Saturday, June 29, 02:00 through Sunday,	18 \$100412	1.9998280559999999 0
	Top help articles and FAQs	Japan Standard Time: Saturday, June 29, 09:00 through Monday, July 1, 04:	19 LCE3E	1.829669684 0
		China CST (Beijing): Saturday, June 29, 23:00 through Monday, July 1, 18:00	20 CSTA	1.789919528 0
	Contacting Support	· If you are new to IPA or taking a trial please see: IPA Trial Resou	21 SLC6A14	1.7496272260000001 0
		Pave your way to greatness using advanced pathway analysis	22 S100A9	1.737970397 0
	Shortcuts	Read our name and sign up for our namelatter	23 KLK12	1.7283063970000001 0
		Tread our <u>news</u> and sign up for our newsletter.	24 KLK7	1.726511224 0
		 Search Google Scholar for <u>publications that cite IPA</u>. 	25 SPRR2F	1.7137438540000001 0
			26 SPRR2G	1.7127803829999999 0
		Don't Show at Startup	27 HOPX	1.688770675 0
			28 PI3	1.653903093 0
			29 PRSS27	1.635624/2000001 0

Core Analysis

IPA											-	0 ×
ile Edit View V	Vindow Help									Provide Feed	.back Support Gene Cher	n Close I
	Genes and Chemicals Diseases a	and Functions Pathways and Lists D	atasets and /	Analyses								000
Create New			-	· · · · · · · · · · · · · · · · · · ·							QIAGEN Land Explore	er eeer
	C	reate Core Analysis						×				QIAG
Annotated Dataset: T	umor core spatial genome DEG											- 0
Preview Dataset Turr	nor_core_spatial_genome_DEG	Selected Dataset: Turn	or cor	a spatial gapama DEC				0				
		Selected Dataset: Tum	or_core	e_spatial_genome_DEG								
Mapped IDs (360)	Unmapped IDs (2) All IDs (362											
Add To My Pathy	Add To Mutlist Coast	Based on this dataset.	which	Core Analysis type would you	like to run?					Symbo	A2ML1 - EHF (1/4)	
Add TO My Patrix	Vay Add to My List Creat	bused on this dutused		core ranarysis type fround you						-,) there is a
Expr Log Ratio	× Expr p-			1					× Type(s)	× Drug(s)		×
.109	0.00E00	Expression Analysis	~						other			
.480	4.91E-27			,					transporter			
1.397	0.00E00	a							peptidase			
.290	1.26E-14	On which measureme	it type	e would you like to base the ana	alysis?				enzyme			
.348	1.91E-25								enzyme C. protoin coupled receptor			
472	2.73E-20 4.95F-14	Expr Log Ratio 🗸	This	measurement will be used to ca	alculate				other			
.606	3.63E-25	capi cognatio 🔹	11		all and will be a				other			
.995	0.00E00		dire	ctionality (z-scores) in the analy	sis and will be				other			
.439	3.52E-24		disp	played in color on pathways and	networks. If you				enzyme			
647	2.37E-26		cho	ose a pop-directional measurem	ent (e.g. p-yalue)				enzyme			
576	0.00E00		choo	ose a non-directional measurem	ient (e.g. p-value)				enzyme			
365	1.18E-22		ther	n z-scores will not be calculated.					enzyme			
539	0.00E00								enzyme transsistion seculator			
252	4.00E-13 3.13E-24								other			
029	0.00E00								enzyme	hydrocort	isone. hydrocortisone/prednisor	e. hydro
604	0.00E00								enzyme			
477	5.78E-18								transporter			
.387	3.42E-2:								other			
047	0.00E00								peptidase			
.802	0.00E00								other			
.552	1.96E-20								transporter			
.435	0.00E00								transporter			
344	6.94E-2(transporter			
.307	0.00E00								other			
409	2.11E-15								transcription regulator			
.828	0.00E00								other			
367	6.97E-25								transcription regulator			
500	5.59E-20								other			
555	1.77E-25								other			
314	7.11E-18								other			
545	9.00E-20 6.52F-26	Deale						Maut	other			
.660	1.30E-26	Back						Next	other			
639	6.68E-295	C6	orf132		C6orf132	chromosome 6 open reading frame 132	Other		other			
.611	4.61E-243	CA	LML3		CALML3	calmodulin like 3	Cytoplasm		other			
.520	0.00E00	ĊA	LML5		CALML5	calmodulin like 5	Cytoplasm		other			
.812	0.00E00	CA	RHSP1		CARHSP1	calcium regulated heat stable protein 1	Cytoplasm		transcription regulator			
.528	0.00E00	cc	L20		CCL20	C-C motif chemokine ligand 20	Extracellular Space		cytokine			
501	0.00E00	CC	177		CCNG2	CD177 molecule	Nucleus		other			
243	0.00E00	CD CD	24		CD24	CD24 molecule	Plasma Membrane		other			
494	1.73E-241	CD	55		CD55	CD55 molecule (Cromer blood group)	Plasma Membrane		other			
.316	1.29E-133	CD	68		CD68	CD68 molecule	Plasma Membrane		other			
.356	2.26E-156	CD	A		CDA	cytidine deaminase	Nucleus		enzyme	cedazurid ^a	Core Analysis	he dea
/ 360											Biomarker Filter	
lags:											Filter Dataset	
D" - Duplicates. Ger	ne/Protein/Chemical identifiers marked	with an asterisk indicate that multiple ident	ifiers in the d	dataset file map to a single gene/chemical in the Global Mol	ecular Network.						microRNA Target Filter	
)" - Override molec	ules. Gene/Protein/Chemical identifiers	marked as "Override" are displayed with it	alic text.								BioProfiler	
A" - Gene/Protein/(chemical ID marked as Absent. The gen	e/protein/chemical will not be used as a foc	us motecule	or appear in networks unless you also explicitly override this	s flag with the Override column.						IsoProfiler	_
										Edit Dataset Settings	Anabra/Filter Dataset M	Closer

Core Analysis –Set Up

Create Expression Analysis - [analysis : Tumor_core_spatial_genome_DEG]	Three Step
Set Cutoffs Biological Filters	1. Set Cutoff 2 Biological Filter
Use cutoffs to select a set of molecules from your dataset to analyze. Ideally choose between 100 and 3000 significantly regulated molecules, and not more than 8000. Include <i>both</i> up-regulated and down-regulated, if possible, to obtain causal predictions.	3. Run Analysis
Set Cutoffs	
Dataset Column Measurement Value Type Range Cutoff	
reate Expression Analysis - [analysis : Tumor_core_spatial_genome_DEG]	
Set Cutoffs Biological Filters	
> General Settings ? Population of genes to consider for p-value calculations: Networks Interaction & Ca ? Node Types biologic drug ? Relationships to consider: Affects networks and upstream regulator analysis Data Sources All ? miRNA Confidence Experi ? Species Human ? Tissues & Cell Lines ? Mutation All ?	Optional Analyses: My Project My Pathways My Lists
Advanced Recalculate 359 analysis-ready molecules (0 Down and 359 Up)	Run Analysis
- Sample to Insight	

Tumor Core Analysis Result Overview

xpression Analysis - Tumor_core_spatial_genome_DEG - 2024-06-14 06:24 下午 - 🗆 🗙 Summary Graphical Summary Pathways Upstream Analysis Diseases & Functions Regulator Effects Networks Lists Analysis Match Molecules Export : 🐼 🎲 🏬 Experiment Metadata Analysis Settings ✓ Top Canonical Pathways Name p-value Overlap Keratinization 1.66E-30 18.7 % 40/214 3.36E-14 Neuroprotective Role of THOP1 in Alzheimer's Disease 16.8 % 3.94E-10 6.3 % 30/476 Neutrophil degranulation 1.30E-09 20.0 % SPINK1 Pancreatic Cancer Pathway 1.78E-08 9/41 Intrinsic Prothrombin Activation Pathway 22.0 % . ✓ Top Upstream Regulators ✓ Upstream Regulators Predicted Activation Name p-value EHF - 8.15E-29 Activated TNF 6.90E-25 Activated • 4.60E-22 Inhibited lgG KRT14 2.98E-21 - • 3.67E-20 FOXC1 V Causal Network Predicted Activation Name p-value EHF - • 3.90E-32 Activated HCK 4.05E-31 Activated - 1.02E-29 Activated JAK (family) EHF • 1.25E-27 Activated - 8.92E-27 Activated IKBKG ✓ Top Diseases and Bio Functions ✓ Diseases and Disorders Name p-value range # Molecules Dermatological Diseases and Conditions 1.65E-02 - 1.47E-67 287 Organismal Injury and Abnormalities 1.65E-02 - 1.47E-67 354 137 Inflammatory Disease 1.65E-02 - 1.73E-23 1.65E-02 - 1.73E-23 121 Inflammatory Response 1.65E-02 - 3.25E-18 124 Immunological Disease ✓ Molecular and Cellular Functions Name p-value range # Molecules • 1.65E-02 - 2.92E-17 143 Cellular Development Post-Translational Modification • 1.65E-02 - 6.33E-15 27 CON States Inc 1.65E-02 - 7.21E-09 109 Cellular Movement B/113 1.65E-02 - 7.74E-09 75 Cell-To-Cell Signaling and Interaction 1.65E 02 7.74E 00 40 Callular Accomply and Oceanization 89.0.

Tumor Core Bubble Plot

Analysis: Tumor_core_spatial_genome_DEG - 2024-06-14 06:24 下午

© 2000-2024 QIAGEN. All rights reserved.

Pathogen Induced Cytokine Storm Signaling Pathway Š訊聯基因數位

Sample to Insight

4440

QIAGEN

Proto-Oncogene transcription factor

© 2000-2024 QIAGEN. All rights reserved.

© 2000-2024 QIAGEN. All rights reserved.

Leading Edge Bubble Plot

Pathogen Induced Cytokine Storm Signaling Pathway S100 Family Signaling Pathway Wound Healing Signaling Pathway Neuroprotective Role of THOP1 in Alzheimer's Disease Color by MSP-RON Signaling In Cancer Cells Pathway z-score Intrinsic Prothrombin Activation Pathway Negative value MSP-RON Signaling In Macrophages Pathway Positive value IL-33 Signaling Pathway Zero value Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza No activity pattern IL-17 Signaling p38 MAPK Signaling Size by Role of IL-17A in Psoriasis Number of genes that overlap the pathway EIF2 Signaling •1 Dendritic Cell Maturation Pulmonary Fibrosis Idiopathic Signaling Pathway Role Of Osteoclasts In Rheumatoid Arthritis Signaling Pathway Oxidative Phosphorylation 27 GP6 Signaling Pathway Neutrophil Extracellular Trap Signaling Pathway Necroptosis Signaling Pathway HIF1a Signaling Acute Phase Response Signaling Osteoarthritis Pathway Integrin Signaling Estrogen Receptor Signaling microenvironment ILK Signaling HOTAIR Regulatory Pathway MicroRNA Biogenesis Signaling Pathway Tumor Microenvironment Pathway HER-2 Signaling in Breast Cancer IL-10 Signaling Wound healing pathway Sirtuin Signaling Pathway Natural Killer Cell Signaling LXR/RXR Activation SPINK1 Pancreatic Cancer Pathway Mitochondrial Dysfunction Pulmonary Fibrosis idiopathic signaling Pathway Coronavirus Pathogenesis Pathway Central minimume mesponse Pathogen Induced Cytokine Storm Signaling Pathway Metabolism of proteins Cellular Stress and Injury Ingenuity Toxicity List Pathways Disease-Specific Pathways 0 Extracellular matrix organization 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 -log(p-value)

© 2000-2024 QIAGEN. All rights reserved.

Pulmonary Fibrosis idiopathic signaling Pathway Š訊聯基因數位

Sample to Insight

44480

© 2000-2024 QIAGEN. All rights reserved.

© 2000-2024 QIAGEN. All rights reserved.

46480

QIAGEN

Compare Analysis

Step for You to do your compared analysis

🕈 Create Comparison Analysis Select analyses for side-by-side comparison. Click View Comparison to view comparison results. Create Comparison Analysis Analyses to Compare Select Analyses A-Z Sort Ieading_edge_SPATIAL_GENOME_deg_clean My Projects Add » Move Up 🎗 F Tumor_core_spatial_genome_DEG - 2024-06 ✓ case study Move Down 🖇 Ieading_edge_SPATIAL_GENOME 3 2 Tumor_core_spatial_genome_DEC 📑 GOAT miRNA mRNA - 2024-06-1 F PKCMT_vs_PKC - 2024-05-16 03:2 somatic_mutatiion_sclc - 2024-05 DEP for CM - 2024-04-26 02:25] UCMSC2_highest_miRNA_mRNA CBP highest miRNA mRNA - 202 **F** AF highest mRNA - 2024-04-19 (data_unique_sharm24hrs - 2024-📑 trama data unique - 2024-04-12 GSE73661-UC VDZ with pval - 202 📔 Nature comm 2020 germline va 📔 Nature comm 2020 germline va I QCIT_mod - 2024-03-15 06:35 下² selected_skin_regeneration_miRN selected_miRNA_list_hair_growth 🖆 colon cancer-association - 2024-(Ulcerative Colitis-associations - 2 « Remove 4 View Comparison Cancel

Compare Analysis Result

Pathogen Induced Cytokir Wound Healing Signaling Atherosclerosis Signaling Cell surface interactions at Interleukin-4 and Interleul Cell junction organization Intrinsic Prothrombin Activ Dendritic Cell Maturation Hepatic Fibrosis Signaling Pulmonary Fibrosis Idiopa Acute Phase Response Sig FAK Signaling Role of Chondrocytes in R Neutrophil Extracellular Tr Sertoli Cell-Sertoli Cell Jur IL-17A Signaling in Fibrob Macrophage Alternative A Activin Inhibin Signaling P Osteoarthritis Pathway Role of Macrophages, Fibr Macrophage Classical Acti Multiple Sclerosis Signalin HER-2 Signaling in Breast ID1 Signaling Pathway Sertoli Cell-Germ Cell June HOTAIR Regulatory Pathw IL-12 Signaling and Produ Keratinization Extracellular matrix organi: Integrin cell surface intera GP6 Signaling Pathway IL-4 Signaling Assembly of collagen fibril Regulation of Insulin-like (Collagen degradation Collagen biosynthesis and Neuroprotective Role of T Collagen chain trimerizatio Role of Osteoclasts in Rhe Post-translational protein Signaling by MET SPINK1 Pancreatic Cancer Cachexia Signaling Pathway 2000 COARDER M 1897 MINING Syndecan interactions Signaling by PDGF

Compare Analysis Result

EMT signaling

Epithelial-mesenchymal transitic Epithelial-mesenchymal transitic Epithelial-mesenchymal transitic Epithelial neoplasm Epithelial-mesenchymal transitic Epithelial to mesenchymal trans

Summary: Evaluating your 'omics data using IPA

- Data upload and analysis setup
- Canonical pathways
- Upstream regulators
- Diseases and functions
- Comparison analysis

Tumor core

Leading edge

ē

訊聯基因數位

spatial

core

Tumor_

다 다

Sample to Insight

QIAGEN IPA – access to manually-curated knowledge base

- > Perform expression analysis and compare cell clusters
 - Discover novel biological mechanisms
 - Identify cell type-specific biomarkers and key regulators/targets

Better Care with Better Knowledge

若有需要進一步的資訊或在使用軟體上遇到問題歡迎聯繫以下窗口: 席佩妤 資深業務專員 CleoHsi@gga.asia 02-2795 1777 #3014 熊嘉妮 專案主任 ChristineHsiung@gga.asia 02-2795 1777 #3028

Bioinfo@GGA.ASIA

44000 **Testing in silico – step 1** File Edit View Window Help

Genes and Chemicals

New My Pathway

Saved My Pathway

😽 訊聯基因

• Search for genes

Genes and Chemicals Di

Refresh

×

Search Results

Diseases and Functions

Add To My Pathway

The search for BHLHE40 n

🖌 / # Symbol

✓ 1 BHLHE40

3

BHLHE40

A-Z Sort

🚳 IPA

Create New...

My Projects

case_study > 🖿 Dataset Files

> 🖿 Analyses

> 🖿 My Lists > 🖿 CGUST > 🖿 CCGH_2

> 🖿 CCGH > 🖿 smh_miRBA > 🖿 CMU_Hung_RNAseq > 🖿 長庚ARDS > IIII exosome miRNA 2

> 📗 Comparison Analyses

> 📗 BioProfiler Results IsoProfiler Results > 🖿 My Pathways

Biomarker Filter Results

Biomarker Comparison Analyses

> MicroRNA Target Filter Results

5 BHLHE40

Search for diseases and functions

Selected/Total rows: 1/1

- Build: Path explorer
- Overlay: Molecule activity predictor, Drug, Cells & Tissues
- Drug: IPA Chem View

Sample to Insight

- Search for genes
 Search for diseases and functions
- Build: Path explorer
- Overlay: Molecule activity predictor, Drug, Cells & Tissues
- Drug: IPA Chem View

– 🗆 🗙

X New My Pathway 2 🝵 🔩 🗟 Edit: 🔯 🔇 📾 👜 👘 🖌 🕞 🤤 Build Overlay Path Designer Pattern Search View: 🎇 💥 🤌 其 🖬 🗄 Zoom: 🔍 🍳 Export: 🐼 🎟 🎰 🚑 **>** 2 way 2 Tool: Path Explorer Add molecules to set A and B and explore shortest path(s) based on specified criteria. Click Apply to view list of shortest path(s). 👘 1 🗄 🗰 Filter Summary -Consider only molecules and/or relationships where species = Human General Settings 0 Interactions ✓ Direct ✓ Indirect Set A Add Remove 3 BHLHE40 Direction: Any Direction < <---> BHLHE40 Set B Add Remove 4 Cell proliferation of tumor cell lines Use Ingenuity Knowledge Base O Use Molecules from Analysis/Dataset/List... Change Analysis/Dataset/List > Data Sources All 0 > miRNA Confidence Level All 0 0 > Species Human 0 > Tissues & Cell Lines All > Mutation All 0 0 > Relationship Types All 5 Cell proliferation of tumor cell lines 0 > Publication Date Range All > Node Types All 0 0 > Diseases All 0 > Biofluids All GEN. All rights reserved. Sam Save As Preferences 6 Restore From Prefs Reset Apply

– 🗆 ×

– 🗆 ×

X New My Pathway 2

My Pathways

Clear

Predict effects:

🔉 🙆 🙆

Search for genes

- Search for diseases and functions
- Build: Path explorer
- Overlay: Molecule activity predictor, Drug, Cells & Tissues
- Drug: IPA Chem View

Sample to Insight

Wy Pathways New My Pathway2 New My Pathway3 New My Pathway3

- - >

2

New My Pathway 2

QIAGEN

Sample to Insight

© 2000-2024 QIAGEN. All rights reserved

Overlapping molecules

- Genes from previous literature that belong to
- A canonical pathway OR
- Downstream of an upstream regulator OR
- Upstream of a disease or function

What the p-value represents

- p-value is different from the "Expression p-value" uploaded with your dataset
- p-value is calculated using Fisher's exact test
- The statistical test looks for an unexpectedly large overlap given the number of molecules in each category
- p-values should be significant (<0.05) for random datasets
- Gene expression direction is not taken into account for this calculation

$$z = \frac{x}{\sigma_x} = \frac{\sum_i x_i}{\sqrt{N}} = \frac{N_+ - N_-}{\sqrt{N}} = (7-1)/\sqrt{8} = 2.12 (= \text{ predicted activation})$$

• z-score is a statistical measure of the match between expected relationship direction and observed gene expression

- z-score greater than 2 or less than -2 is considered significant
- Note that the actual z-score is weighted by the underlying findings, the relationship bias and dataset bias