

P2P: pre-GWAS to post-GWAS

陳佳煒 (Jia-Wei Chen) 2025/04/01

https://www.cog-genomics.org/plink/1.9/ https://www.cog-genomics.org/plink/2.0/

A tool for genetic data analysis, focusing on association testing and quality control.

https://www.r-project.org/

A statistical programming language widely used for data analysis, visualization, and bioinformatics.

https://www.python.org/

A versatile coding language for data science, automation, and machine learning.

https://github.com/saigegit/SAIGE

A mixed-model method for GWAS, designed for binary traits while accounting for relatedness.

https://rgcgithub.github.io/regenie/

A two-step GWAS tool optimized for large datasets, reducing computational burden with ridge regression.

https://annovar.openbioinformatics.org/en/latest/

A bioinformatics tool for variant annotation, functional interpretation, and filtering, aiding genomic studies by linking mutations to biological insights.

https://cncr.nl/research/magma/

A tool for gene and gene-set/pathway analysis

https://fuma.ctglab.nl/

A tool for SNP-to-gene mapping, functional annotation, and pathway analysis.

Batch SNP check

Why?

- A batch effect can be arose from differences in platforms, protocols, sample compositions, DNA qualities, etc.

- Potentially leading to spurious associations or confounding in GWAS

How?

- Compare AFs of SNPs to ones in public database (e.g., 1000 genomes project) to identify the SNPs with weird Afs

- Instead of excluding the SNPs, marking the genotype calls of samples from problematic batches as missing for such SNPs

Sex check

Why?

- May have chromosome anomaly or structural variation
- May be a covariate in the subsequent analysis

sex chromosome

How?

- Using either **homozygosity rate** or **inbreeding coefficient** of X chromosome to check for the gender

	Male	Female
Homozygosity rate	≥ 0.9	< 0.9
Inbreeding coefficient (F)	> 0.8	< 0.2

- If EHR data is accessed, directly comparing EHR gender to genetic gender

Genotype call-rate check

Why?

- Low DNA quality or concentration often have belowaverage call rates & genotype accuracy

How?

- Calculate genotype call-rate (GCR) for autosomes

N = # of markers

 $N_i = \#$ of nonmissing genotypes for individual *i*

Heterozygosity rate check

Why?

- An excessive of heterozygote genotypes, which may be indicative of DNA sample contamination

- A reduced proportion of heterozygote genotypes, which may be indicative of inbreeding

How?

- Calculate heterozygosity rate (HR) for autosomes

 $N_i = \#$ of nonmissing genotypes for individual i $O_i = \#$ of homozygous genotypes for individual i $HR_i = \frac{N_i - O_i}{N_i}$

Cryptic relatedness check

Why?

- An association study will be interfered by the relatedness, e.g., violation of assumption for linear/logistic models, bias AF estimation, etc.

- A family-based study should take the relatedness into account

plink --indep-pairwise 50 5 0.2 Plink –genome / plink --king-cutoff 0.0442

How?

- Usually, using **independent** SNPs (pair correlation $r^2 < 0.2$) to calculate the relatedness of individuals by either proportion IBD or kinship coefficient to check for the relatedness

	Proportion IBD	Kinship coeff.
duplicate/MZ twin	1	> 0.354
1 st degree	0.5	[0.177, 0.354]
2 nd degree	0.25	[<mark>0.0884</mark> , 0.177]
halfway of 2 nd & 3 rd degrees	> 0.1875	
3 rd degree	0.125	[<mark>0.0442</mark> , 0.0884]

Divergent ancestry check

Why?

- Confounding to case/control groups, i.e. identified markers may not associated with disease but differently distributed in ancestries (Hamer, D., & Sirota, L. (2000)

plink2 --pca approx

How?

- Merge study genotypes to HapMane or 1000 genomes data
- Exclude ambiguous SNPs (A/T or C/G polymorphic)
- Prune highly correlated SNPs
- PCA
- Exclude individuals out of 99.9% confidence band of data

Divergent ancestry check

plink2 --pca approx

Why?

- Confounding to case/control groups, i.e. identified markers may not associated with disease but differently distributed in ancestries (Hamer, D., & Sirota, L. (2000)

Note!

- When sample size of target data is much larger than that of ancestry data, the first PCs may be dominant by the variations of target data

Genotype call-rate check

Why?

- Low call-rates may indicate technical issues or poorquality data

How?

- Exclude markers with lower call rate, say 95% (sometimes, 99%)

- For case/control study, we can further

1. exclude markers with a large difference of call rates between cases & controls

2. exclude markers with a call rate less than 95% in either cases or controls

Minor allele frequency check

Why?

- Rare variants (with very low MAF) may have limited statistical power to detect associations and could also prone to genotype errors

How?

- Exclude markers with lower MAF, say 0.01 (sometimes, 0.05)

Individual-based AF

Genotype call	AF _A	AF _B	MAF
AA	1	0	0
AB	0.5	0.5	0.5
BB	0	1	0

We may also interested in what the **minor/major allele** is

Hardy-Weinberg eq. check

Why?

- Deviation from expected genotype frequencies (based on observed allele frequencies) may indicate genotyping errors, population stratification, etc.

How?

- Exclude markers with a p-value of Hardy-Weinberg equilibrium (HWE) test less than a threshold (e.g., Bonferroni's level)

1. In case/control study, the HWE test is applied for control individuals only

2. In quantitative-trait study, the HWE test is applied for all individuals

		Allele 2		
		А	В	
Allele 1	Α	$p_{AA} = p_A^2$	$p_{AB} = p_A p_B$	p_A
	В	$p_{BA} = p_B p_A$	$p_{BB} = p_B^2$	p_B
		p_A	p_B	1

Hardy-Weinberg principle

The genetic variation (allele/genotype frequencies) in a population will remain **constant** from one generation to the next in the **absence of disturbing factors** (e.g., selection, mutation and migration)

Subpopulation structure

Why?

- Confounding to case/control groups, i.e. identified markers may not associated with disease but differently distributed in ancestries

Novembre, J., Johnson, T., Bryc, K. et al (2008)

plink --indep-pairwise / plink --clump plink2 --pca approx biallelic-var-wts

How?

 Identify independent SNPs through pruning, clumping, removing long-range LD (LRLD) region, or by combining methods

- PCA

Subpopulation structure

Why?

- Confounding to case/control groups, i.e. identified markers may not associated with disease but differently distributed in ancestries

Novembre, J., Johnson, T., Bryc, K. et al (2008)

plink --indep-pairwise / plink --clump plink2 --pca approx biallelic-var-wts

Note!

- Without identifying independent SNPs, the first several PCs may be dominated by SNPs in MHC region (on chr. 6)

(score plot)

Subpopulation structure

Why?

- Confounding to case/control groups, i.e. identified markers may not associated with disease but differently distributed in ancestries

Novembre, J., Johnson, T., Bryc, K. et al (2008)

plink --indep-pairwise / plink --clump plink2 --pca approx biallelic-var-wts

Note!

- Without identifying independent SNPs, the first several PCs may be dominated by SNPs in MHC region (on chr. 6)

(loading plot)

Fixed-effects model

When?

- Assuming that each SNP has the same impact on a trait, regardless of an individual's background, ancestry, or other subgroup characteristics

plink2 --glm no-x-sex hide-covar cols=... --pheno --covar --covar-variance-standardize

Note!

- Binary trait

1. Strict disease group definitions are necessary, but sample size may still be the ultimate challenge in GWAS

2. Firth logistic regression can deal with the issue of rare events or complete separation in traditional logistic regression

- Quantitative trait

1. Inverse normal transformation (INT):

$$INT(x) = \Phi^{-1}\left(\frac{rank(x)-c}{n-2c+1}\right) \begin{cases} c = \frac{3}{8} (Blom, 1958) \\ c = \frac{1}{3} (Tukey, 1962) \\ c = \frac{1}{2} (Bliss, 1967) \end{cases}$$

Mixed-effects model

Considering about fixed effects and random effects, and it is useful when dealing with structured or related populations
Proximal contamination

covariates target SNP all SNPs Infinitesimal model $y = X\alpha + g\beta + X_G\gamma + \epsilon$ fixed part random part genetic effect population familial stratification relatedness $y = X\alpha + g\beta + X_g\gamma + \epsilon$

Note!

- Binary trait

1. Strict disease group definitions are necessary, but sample size may still be the ultimate challenge in GWAS

2. Firth logistic regression can deal with the issue of rare events or complete separation in traditional logistic regression

- Quantitative trait

1. Inverse normal transformation (INT):

INT(x) =
$$\Phi^{-1}\left(\frac{rank(x)-c}{n-2c+1}\right) \begin{cases} c = \frac{3}{8} (Blom, 1958) \\ c = \frac{1}{3} (Tukey, 1962) \\ c = \frac{1}{2} (Bliss, 1967) \end{cases}$$

SAIGE and REGENIE include the of INT, but BOLT-LMM doesn't

After GWAS GWAS Catalog https://www.ebi.ac.uk/gwas/ GWAS Catalog The NHORE BIT Catalog of human genome--COE Confirm by the previous findings 1. Expect **consecutive** SNPs with smaller p-values rather Explanation of relations than scattered SNPs with smaller p-value across multiple between identified chromosomes genes and phenotypes 2. Significant SNPs are identified using Bonferroni correction or FDR, while **nominally significant** SNPs are OMIM https://omim.org/ determined by a predefined threshold A 104 1444 **D**MIM OMIM 10 11 12 13 14 16 14 17 16 19 28 28 28 (nominal) significant SNPs - 42 -25 30 07 GTEx https://www.gtexportal.org/home/ 2 GTEx Portal 🎲 💷 🖗 **GTEX dGTE** Manhattan plot QTLbase http://www.mulinlab.org/qtlbase/index.html ert course ertex ertex ertex ertex BROAD Search genes of eQTL or proteins of pQTL

Functional mapping

What?

- A bioinformatics approach used to link genetic variants or biological sequences to their functional roles.

Which?

- https://fuma.ctglab.nl/

- Functionally interpret GWAS results by

SNP2GENE (Maps SNPs to genes and provides functional annotation) **GENE2FUNC** (Analyzes gene expression patterns and functional enrichment) **Cell Type** (Identifies cell types relevant to GWAS findings)

Note!

- Summary statistic files should be .zip

- The GRCh38 option is not functional

- Without providing information about chromosomes and physical positions, using **rsid** to determine genomic location

- Processing is not possible if no SNPs with p-values < 1e-5

		100000 T 1000 TH 2003	CIT FOCT	00423-050	Cell type - 1	Jas Download	i Twids Openie	. 0
Here you can find a groups. Troublesho	detailed list of the error codes. rding List	We kindly advise theres	gh consultation (of this traublesho	ating list prior to	seeking assistant	e through Google	
		FL	JMA GW	AS				
Fund	tional Mapping	and Annotat	ion of G	enome-V	/ide Ass	ociation S	Studies	
About FUMA FUMA is a plattern that The SNP20EM mode The GENESPENC mod The GENESPENC mod The GENESPENC mod The GENESPENCE model To solutint your even CIN You can breves public :	can be used to annotate, prioriti to takes (WAS summary statistic ule takes a list of gene IDs (as id alars MADMA gene analysis mas AS, logn is sequend for security results of FUMA (including examp	n, visualize and interpret as an viput, and provide initial by SNP20ENE or t (as an autor then SNP manen. If you have not re is jobs) from Drawso Pub	OWAS results. s extensive function as provided manu- IGENE or as provi patiened yet, you o ic Results without	onal aneotation for ally) and annotates ided manually) and an do so from here registration or logit	al SNPs in gener genes in biologi predicta relevant	nic areas identified t cal context, call types,	ry lead SNPs.	
Please post any questo	ns, suggestions and bug reports	on Google Forum: FLMA	OWAS users.					
K. Watanabe, E. Tanket links https://www.nature When using out type at K. Watanabe, M. Umior https://www.nature.com Depending on which re specificity analysis for s	and use the locations of the second barrier of the second barri	huma: Punctional mappin 6 Son Heusel and D. Posthu se also cite the original sh	g and annotations ma. Genetic mapp why of dote source	of genetic associati ping of cell type upo rs/tools used in FUI	ars with FUMA. J cificity for comple AA (references an	iat. Commun & 182 is traits. Illat. Comm e available at links o	6. (2017). un. 1932222. (2015) ir belocial for the cell typ	
	SNP2SENE				00	ERFUNC		
414								
					78			
		P.W. 81						
							CN	CREQCT

Functional mapping

What?

- A bioinformatics approach used to link genetic variants or biological sequences to their functional roles.

Which?

- https://annovar.openbioinformatics.org/en/latest/

- A bioinformatics tool for variant annotation, functional interpretation, and filtering, aiding genomic studies by linking mutations to biological insights.

Note!

- Download <u>reference database</u> (e.g., refGene, 1000g, exac03, avsnp, dbnsfp, clinvar, icgc, cosmic, gwasCatalog, gtex, etc.) by **annotate_variation.pl**

- Annotate the reference database information to findings (significant SNPs) by table_annovar.pl

Gene-/pathway-based analysis

What?

- Considering about **joint effects** of SNPs on a gene or in a gene set/pathway to improve statistical power and biological interpretation.

Which?

- https://cncr.nl/research/magma/

- A bioinformatics tool for gene and gene-set analysis by aggregating SNP associations at the gene level, accounting for linkage disequilibrium and interactions, and further extending to gene-set/pathway level.

Note!

- Download reference data of 1000 genomes project provided by MAGMA

- Download gene location files provided by MAGMA
- Download gene-set files provided by MSigDB (need to register)

Thanks for your attention!! <(_ _)>