Local alignments & BLAST online and offline

Wen-Dar Lin Bioinformatics core, IPMB wdlin@gate.sinica.edu.tw

Preface

- When we are talking about *sequence similarity*, we usually are talking about *local alignments*.
- NCBI BLAST is one of the most famous local alignment programs where almost everyone has ever used it.
- The concept of BLAST algorithm is fundamental.
 - Knowing it would help us to understand many other modern alignment/mapping algorithms.

Preface

- This presentation is intended to provide information of
 - theoretical background of local alignments,
 - *underlying algorithm* of BLAST, and
 - usages of BLAST programs.
- Files: PowerPoints, walk-through logs, scripts, and example data
 - https://maccu.project.sinica.edu.tw/20250513/
 - would have some update by noon of 20250513

Disclaimer

- This presentation is *not* intended to describe every detail of BLAST
 - NCBI provides detailed documentation on BLAST
 - <u>https://blast.ncbi.nlm.nih.gov/doc/blast-help/</u>
- The BLAST programs described in this presentation are recent *BLAST*+ programs.
- The interface of online BLAST services might be improved by anytime
 - They might look different from what was described in this presentation

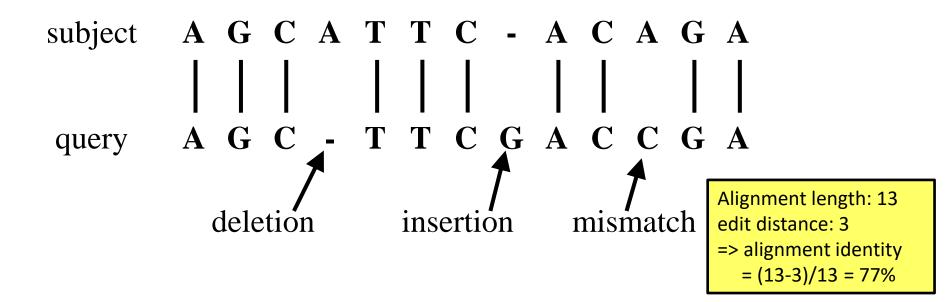
Topics

- 1. Theoretical alignment algorithm
- 2. BLAST -- Basic Local Alignment Search Tools
- 3. Understanding BLAST statistics
- 4. Major variants of BLAST programs
- 5. Online BLAST services: NCBI & Ensembl
- 6. Standalone BLAST programs

Theoretical alignment algorithm

- In this section, we will go through
 - edit distances,
 - global alignments,
 - dynamic programming, and
 - local alignments.

Edit distance


- The very first question
 - "a way of quantifying how *dissimilar* two strings (e.g., words) are to one another by counting the *minimum number of operations* required to transform one string into the other"
 - In bioinformatics, *operations* are usually:
 - Insertion
 - Deletion
 - Substitution

Edit distance

- Edit distance, an example
 - kitten \rightarrow sitten, one substitution
 - sitten \rightarrow sittin, another substitution
 - sittin \rightarrow sitting, one insertion
- From "kitten" to "sitting", we need *three* operations.
 - The distance between the two words is 3.

 "In bioinformatics, it can be used to quantify the *similarity* of DNA sequences, which can be viewed as strings of the letters A, C, G and T."

Source: Wikipedia: Edit distance

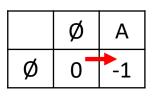
- Assuming
 - each match base gives score +1
 - each mismatch/insertion/deletion gives penalty -1

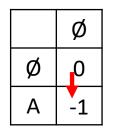
score: 4

no InDels

• Given the two sequences, we can have an alignment of score 4.

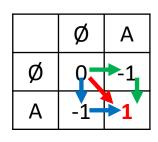
• With the same two sequence, we can have another alignment of score 7.

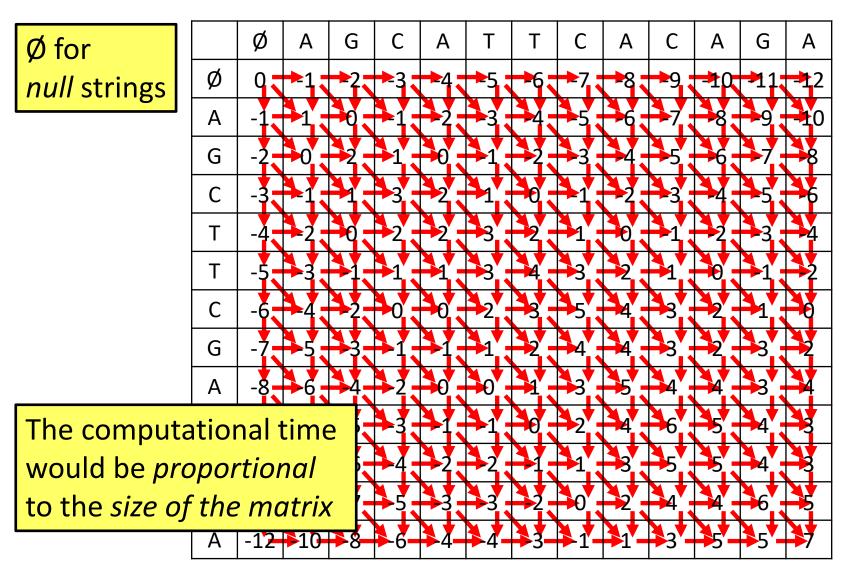

• Question: given two sequences, how can we be sure that an alignment is of the *best* score?


• The dynamic programming algorithm

Ø for *null* strings

	Ø	Α	G	С	Α	Т	Т	С	А	С	Α	G	А
Ø	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12
Α	-1	1	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
G	-2	0	2	1	0	-1	-2	-3	-4	-5	-6	-7	-8
C	-3	-1	1	3	2	1	0	-1	-2	-3	-4	-5	-6
Т	-4	-2	0	2	2	3	2	1	0	-1	-2	-3	-4
Т	-5	-3	-1	1	1	3	4	3	2	1	0	-1	-2
C	-6	-4	-2	0	0	2	3	5	4	3	2	1	0
G	-7	-5	-3	-1	-1	1	2	4	4	3	2	3	2
Α	-8	-6	-4	-2	0	0	1	3	5	4	4	3	4
C	-9	-7	-5	-3	-1	-1	0	2	4	6	5	4	3
C	-10	-8	-6	-4	-2	-2	-1	1	З	5	5	4	3
G	-11	-9	-7	-5	-3	-3	-2	0	2	4	4	6	5
Α	-12	-10	-8	-6	-4	-4	-3	-1	1	3	5	5	7

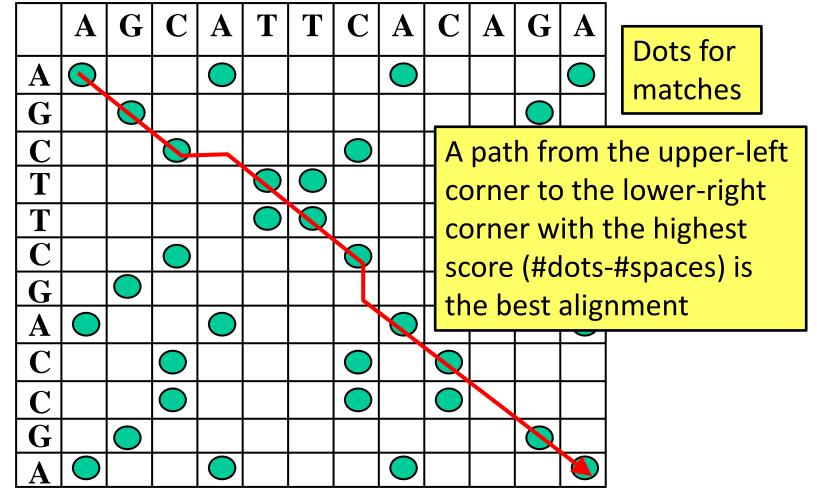

• The key is the incremental computation based on *previous* results on *every cell of the matrix*


"A" to Ø, a deletion score: -1

Ø to "A", an insertion score: -1

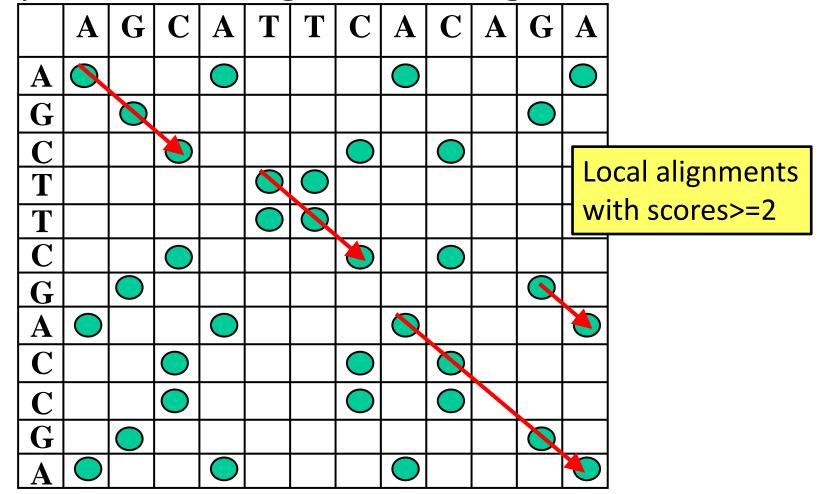
- "A" to "A", three possibilities
- 1. delete A and insert A: score -2 (green)
- 2. insert A and delete A: score -2 (blue)
- 3. match of A: score 1 (red, the best)

• The incremental computation for the entire matrix



• Trace *back* and get the global alignment

			<u> </u>												
[Ø for		Ø	А	G	С	А	Т	Т	С	А	С	А	G	Α
		Ø	-	D	D	D	D	D	D	D	D	D	D	D	D
	null strings	Α	I	N	D	D	Μ	D	D	D	Μ	D	Μ	D	Μ
		G	I	Ι	M	D	D	D	D	D	D	D	D	Μ	D
		C	I	I	I	M	4	D	D	Μ	D	Μ	D	D	D
		Т	I	Ι	Ι	I	S	Μ	Μ	D	D	D	D	D	D
		Т	I	I	I	Ι	S	Μ	Μ	D	D	D	D	D	D
		С	I	Ι	I	Μ	S	Ι	Ι	Μ	D	Μ	D	D	D
M:	match	G	I	I	Μ	I	S	I	I		S	S	S	Μ	D
S: s	ubstitution	Α		Μ		-	Μ		-	I	Z	D	Μ	D	Μ
l: ir	sertion	C		I		Μ		S	—	Μ	I	X	D	D	D
D: (deletion	C		I		Μ		S	—	Μ		Μ	Ś	S	S
		G			Μ			S			Ι		S	M	D
		Α		Μ	I	I	Μ	S			Μ		Μ	Ι	M


 You may check sheet DynamicProgramming of the supplement Excel file LocalAlignmentExample_20250513.xlsx for Excel formulas of dynamic programming for string alignments

• Dot plots, another way of viewing the matrix

Local alignment

• Dotplots – local alignments, diagonals of dots

Local alignment

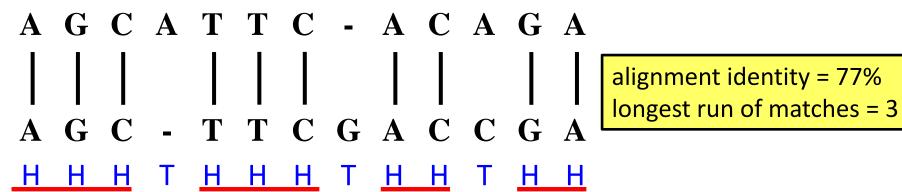
- Physical meaning of
 - Global alignments
 - Determine if two sequences are *entirely* similar to each other.
 - Local alignments
 - Find *subsequences* in one sequence that are very similar to *subsequences* in the other sequence.
 - To find *any* similarity from one sequence (query) in some other sequences (database)

Local alignment

• Exact local alignment search algorithms

Step 1: build up a table of size m×n (m: length of query, n: length of database) like a dot plot

- Step 2: search diagonals of dots (local alignments)
- This kind of approaches would cost at least *m×n* units of time.
 - Image that that the database might be something like nr/nt, RefSeq, UniProt ...
 - should be *time-consuming*


Short summaries

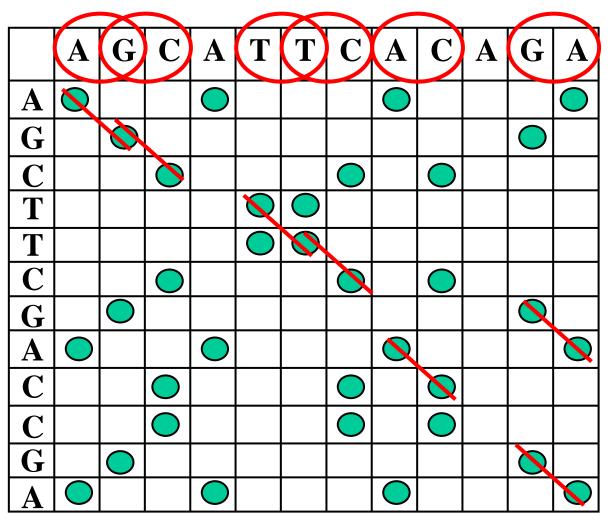
- In computer science, edit distances are used for measuring the distance between two strings.
- In bioinformatics, scores of matches + penalties of insertion/deletion/substation are for measurement of the similarity between two sequences.

Short summaries

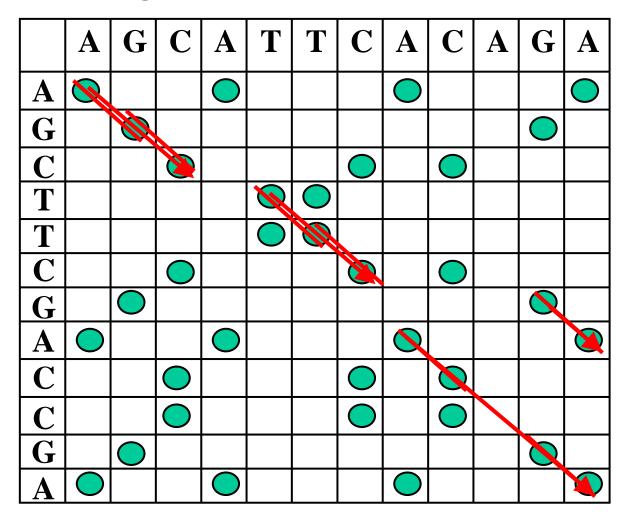
- Dynamic programming helps to find
 - global alignments and
 - local alignments
 - for entire sequences and subsequences, respectively.
- Time cost of dynamic programming is proportional to the size of query *times* the size of target database.
 - could be *time-consuming* for large databases.

- Basic Local Alignment Search Tool
 - a *heuristic* algorithm
 - BLAST assumes local alignments to be found containing exact matches no less than W
 - Consider an alignment as a series of coin tossing with outcomes Head (match) or Tail (mismatch/InDel)
 - High similarity means a long run of Heads (matches)

- The algorithm largely reduces the search time by
 - building a look-up table that stores all positions of
 W-mers of the query sequence
 - takes *m* units of time
 - looking for these W-mers in the database
 - takes *n* units of time
 - forming local alignments based on the W-mer seeds


- Build a look-up table of all 2-mers
 - Query sequence: AGCTTCGACCGA

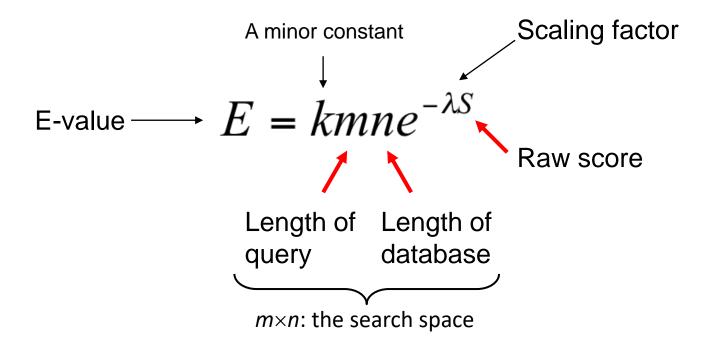
− W=2


AG	1
GC	2
СТ	3
TT	4
TC	5
CG	6,10
GA	7,11
AC	8
CC	9

• look for these *W*-mers in the database

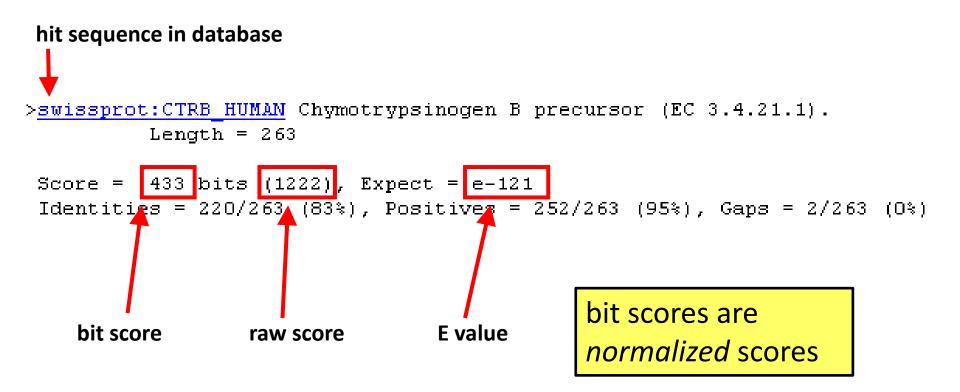
	-
AG	1
GC	2
СТ	3
TT	4
TC	5
CG	6,10
GA	7,11
AC	8
CC	9

• Form local alignments based on the *W*-mer-hits


Short summaries

- Time cost of theoretical dynamic programming is proportional to the size of query *times* the size of target database.
- The BLAST *heuristic* algorithm *assumes* consecutive *W* matches in the result alignments
 - The high similarity => usually the longer consecutive matches

Short summaries


- The time cost of BLAST is proportional to the sum of
 - the size of query (for building the look-up table),
 - the size of database (scanning against the look-up table), and
 - the volume of total alignments (which is usually very small, compared to the size of database).
- Much *smaller* than that of dynamic programming.

- In addition to the fast heuristic, BLAST computes an E-value for each alignment
 - based on the similarity score

- The E-value means the expected number of local alignments that have alignment scores greater than or equal to <u>S</u> in <u>this</u> BLAST search.
 - An E-value close to zero means that an alignment with score S or greater is *not likely* to appear in a random sequence model.
 - The alignment should not be "random."
 - A thinking of statistical hypothesis testing.

 For each local alignment, there will be a summary like this

- Within one BLAST search
 - It is feasible to compare alignments based on Evalues or bit scores.
 - A smaller (more significant) E-value means an alignment *less* likely to be "random."
 - A larger bit score means an alignment of two "closer" subsequences.

- From different runs of BLAST searches, you may compare alignments based on
 - bit score, the normalized score.
 - E-values are no longer feasible to be used for comparing alignments
 - Recall that $E = kmne^{-\lambda S}$
 - if the same query sequence (length m) were used to search against different databases (length n₁ ≠ n₂, respectively)
 - alignments with the same score S would result in different E-values $kmn_1e^{-\lambda S} \neq kmn_2e^{-\lambda S}$

Short summaries

- Knowing BLAST statistics better would help you to interpret BLAST outputs better.
- A way to fix "the same score but different *E*values in different BLAST searches" problem when running *standalone* BLAST programs
 - specify a fixed *effective search space* (i.e. $m \times n$ in the *E*-value formula)
 - option "-searchsp" for BLAST+ programs

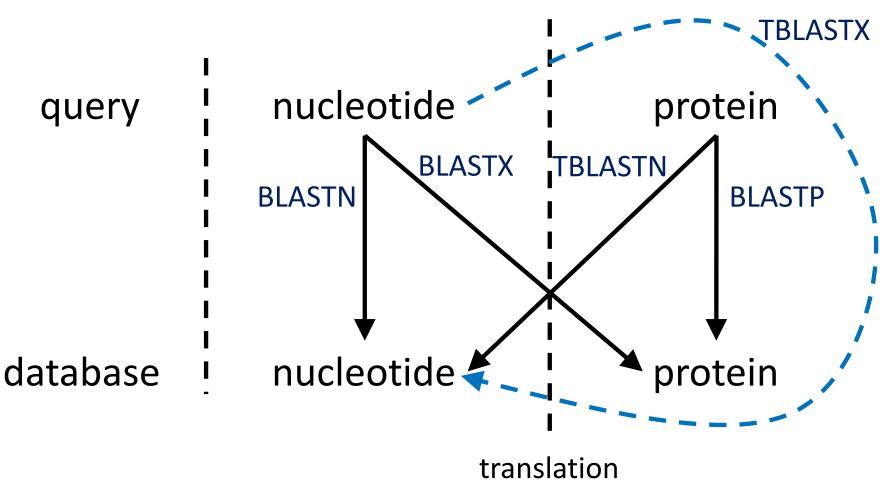
Major variants of BLAST programs

- BLASTN
 - Searching nucleotide databases using a nucleotide query.
 - The underlying algorithm should be closed to what we described in the BLAST algorithm section.
 - Build a *W*-mer look-up table of the query
 - Scan the database against the look-up table, a hit was identified if an exact match
 - Form alignments based on *W*-mer hits in the database

- BLASTP
 - Searching protein databases using a protein query.
 - The underlying algorithm should be *similar* with what we described in the BLAST algorithm section
 - Build a *W*-mer look-up table of the query
 - Scan the database against the look-up table, a seed was identified if the database W-mer is close enough to the query W-mer, given the AA-to-AA scoring matrix.
 - Form alignments based on *W*-mer hits in the database. Alignment scores were computed according to the AAto-AA scoring matrix

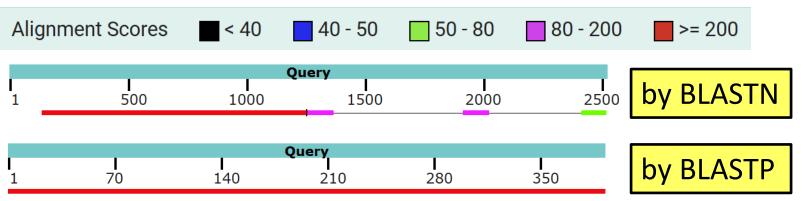
- BLASTX
 - Searching protein databases using a nucleotide query by translating 1 query into 6 protein queries using the six reading frames.
 - Actual sequence search was done like using BLASTP.
 - Considering this as running 6 times of BLASTP.

- TBLASTN
 - Searching nucleotide databases using a protein query by translating the database using the six reading frames.
 - Actual sequence search was done like using BLASTP.
 - Considering this as running 6 times of BLASTP.


- TBLASTX
 - Searching nucleotide databases using a nucleotide query by translating *both* query and the database using the six reading frames.
 - Actual sequence search was done like using BLASTP.
 - Considering this as running 36(=6x6) times of BLASTP.

- If the actual alignment to be done is for protein sequences (blastp, blastx, tblastn, and tblastx),
 - there will be a matrix parameter for scoring.

Matrix	Best use	Similarity (%)
BLOSUM90	Short alignments that are highly similar	70-90
BLOSUM80	Detecting members of a protein family	50-60
BLOSUM62	Most effective in finding all potential similarities	30-40
BLOSUM30	Longer alignments of more divergent sequences	<30


Short summaries

• The five major BLAST variants

A short note

- From above, we can find that BLASTN is the only BLAST variant that compares nucleotide sequences in the underlying level.
 - Comparing protein sequences would be *more* sensitive than comparing nucleotide sequences.
 - Example: comparing human-mouse TP53

Online BLAST services

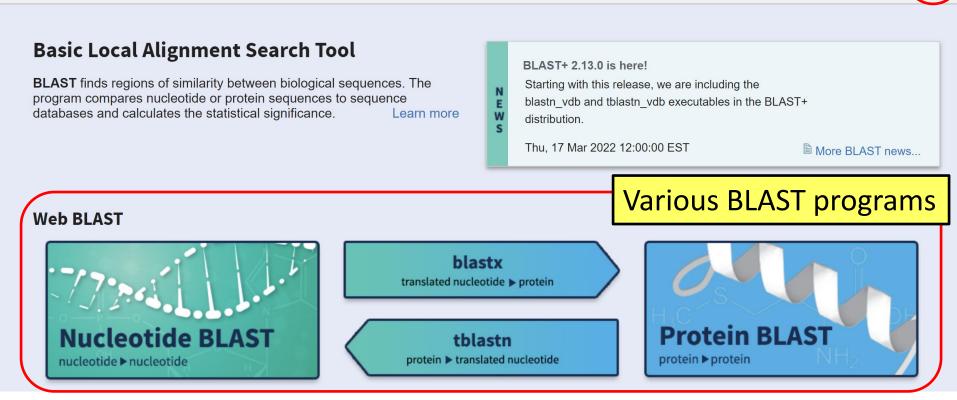
- In this section, we will demonstrate usages of online BLAST services provided by NCBI and Ensembl
 - NCBI: <u>https://blast.ncbi.nlm.nih.gov/Blast.cgi</u>
 - Ensembl (plants):
 https://plants.ensembl.org/Multi/Tools/Blast
 - These service sites are periodically updating their functionalities
 - descriptions here might be a little different with the actual pages *later*

Various BLAST programs

Help docs

Help

Recent Results Saved Strategies


Home

NCBI BLAST services

<u>https://blast.ncbi.nlm.nih.gov/Blast.cgi</u>

– or google "NCBI BLAST"

BLAST[®]

- Entering any BLAST program in last slide would lead you to pages of similar organization
 - Take Nucleotide BLAST as an example

Enter query 🦯	Enter Query : Enter accession	Sequence number(s), gi(s), or FASTA sequence(s) From To	
sequence(s)		Choose File No file chosen	Pick target database, and optionally set
	Choose Sear Database Organism Optional Exclude Optional	Ch Set Standard databases (nr etc.): OrRNA/ITS databases OGenomic + transcript databases OBetacoronavirus Nucleotide collection (nr/nt) Enter organism name or id-completions will be suggested Characterization Models (XM/XP) Uncultured/environmental sample sequences	organism constraint
	Limit to Optional Entrez Query Optional	 Highly similar sequences (megablast) More dissimilar sequences (discontiguous megablast) 	Finer program selection
Run!	BLAST	Somewhat similar sequences (blastn) Choose a BLAST algorithm	

query sequence(s)

- Can be in multi-FASTA formats or bare sequence

- Target database
 - Usually we pick (core) nr/nt or Refseq
 - (core) nt: GenBank+EMBL+DDBJ+PDB+RefSeq sequences, but excludes EST, STS, GSS, WGS, TSA. *Identical* sequences have been merged into one entry.
 - refseq_rna: RNA parts of RefSeq. RefSeq is a comprehensive, integrated, non-redundant, well-annotated set of sequences, including genomic DNA, transcripts, and proteins. (ref: NCBI RefSeq)

Core nucleotide database (core nt)

Title:Core nucleotide BLAST database Description:The core nucleotide BLAST database consists of GenBank+ 2 HTGS sequences and most eukaryotic chromosome sequences. The o taxonomy information for each entry. Molecule Type:mixed DNA make a good use of those question icons!

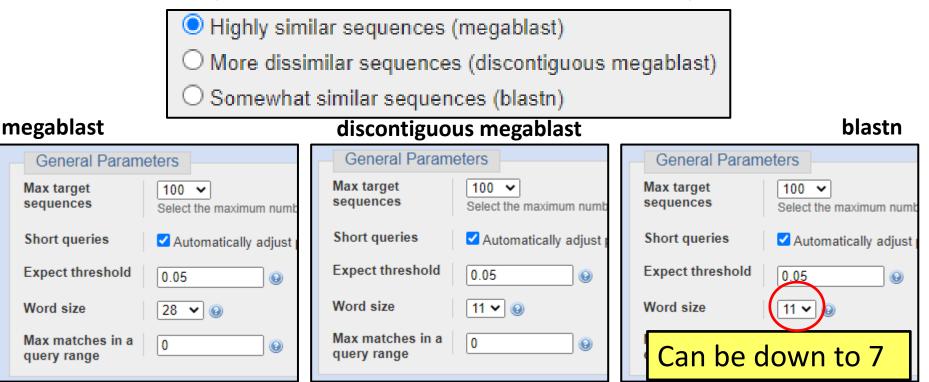
A short note

- Why pick (core) nr/nt?
 - nr for the non-redundant collection of proteins and nt for the non-redundant collection of nucleotides.
 - They are representing *gene-level universal collections* of sequences in NCBI.
 - Searching against nr/nt means we usually got a hit if there is a similar sequence in NCBI

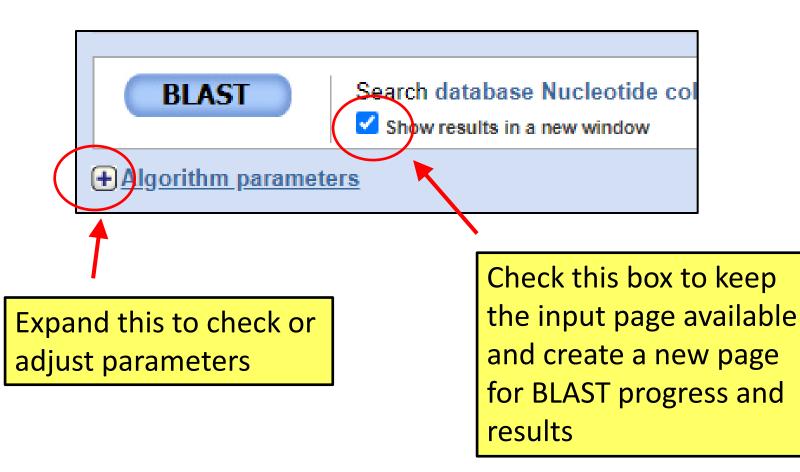
A short note

- Why pick Refseq rna/protein?
 - Refseq rna/protein datasets were made by collecting sequences of *curated* transcriptomes and proteomes of complete genomes
 - Searching against Refseq rna/protein under some species constraint *usually* means that no gene would be missed for those species.
- Checking database descriptions help you to make decisions!

- Set organism constraint
 - Entering name of your target organism would bring out a pull-down menu, simply pick the desired organism.


Organism	
Optional	arabidopsis
	Arabidopsis (taxid:3701)
	Arabidopsis thaliana (taxid:3702)
	Arabidopsis lyrata (taxid:59689)
	Arabidopsis lyrata subsp. lyrata (taxid:81972)

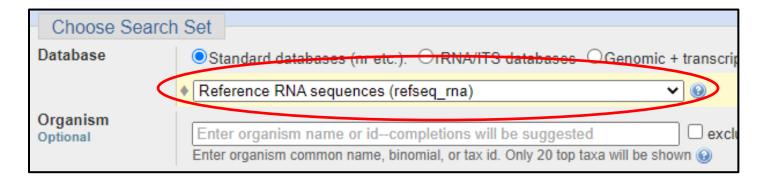
- A precise way is to find out taxid or the target organism from the NCBI Taxonomy database
 - google "NCBI Taxonomy"


Arabidopsis thaliana

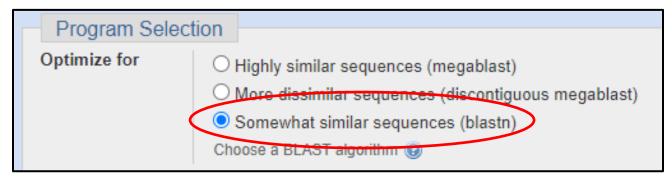
Taxonomy ID: 3702 (for references in articles please use NCBI:txid3702)

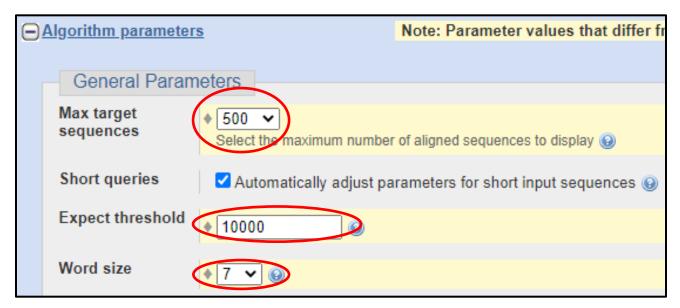
- Finer program selection
 - For Nucleotide BLAST, there actually a few number of variations of programs doing the similar tasks
 - The key difference between them are parameters

• Before you run BLAST


- A BLASTN example
 - In this example, we would like to search
 Arabidopsis thaliana bZIP60 against NCBI RefSeq
 database
 - bZIP60 transcript sequence
 - <u>https://www.arabidopsis.org/sequence?key=10024312</u>
 <u>37</u>

• The bZIP60 transcript sequence


г						
l	001	GACCATGGCG	GAGGAATTTG	GAAGCATAGA	TTTACTCGGA	GATGAAGATT
l	051	TCTTCTTCGA	TTTCGATCCT	TCAATCGTAA	TTGATTCTCT	TCCGGCGGAG
l	101	GATTTTCTTC	AGTCTTCACC	GGATTCATGG	ATCGGAGAAA	TCGAGAATCA
l	151	ATTGATGAAC	GATGAGAATC	ATCAAGAGGA	GAGTTTTGTG	GAATTGGATC
l	201	AGCAATCGGT	TTCAGATTTC	ATAGCGGATC	TACTCGTTGA	TTATCCAACT
l	251	AGCGATTCTG	GCTCCGTTGA	TTTGGCGGCT	GATAAAGTTC	TAACCGTCGA
l	301	TTCTCCCGCC	GCCGCTGATG	ATTCCGGGAA	GGAGAATTCG	GATTTGGTTG
l	351	TTGAGAAGAA	GTCTAATGAT	TCTGGTAGCG	AGATTCATGA	TGATGATGAC
l	401	GAAGAAGGAG	ACGATGATGC	TGTGGCTAAA	AAACGAAGAA	GGAGAGTAAG
l	451	AAATAGAGAT	GCGGCGGTTA	GATCGAGAGA	GAGGAAGAAG	GAATATGTAC
l	501	AAGATTTAGA	GAAGAAGAGT	AAGTATCTCG	AAAGAGAATG	CTTGAGACTA
l	551	GGACGTATGC	TTGAGTGCTT	CGTTGCTGAA	AACCAGTCTC	TACGTTACTG
l	601	TTTGCAAAAG	GGTAATGGCA	ATAATACTAC	CATGATGTCG	AAGCAGGAGT
l	651	CTGCTGTGCT	CTTGTTGGAA	TCCCTGCTGT	TGGGTTCCCT	GCTTTGGCTT
l	701	CTGGGAGTAA	ACTTCATTTG	CCTATTCCCT	TATATGTCCC	ACACAAAGTG
l	751	TTGCCTCCTA	CGTCCAGAAC	CAGAAAAGCT	GGTTCTAAAC	GGGCTCGGGA
l	801	GTAGTAGCAA	ACCGTCTTAT	ACCGGCGTTA	GTCGGAGATG	TAAGGGTTCG
l	851	AGGCCTAGGA	TGAAATACCA	AATCTTAACC	CTTGCGGCGT	GACAACGCCT
l	901	TTTTTAACTG	CTTCTTTTGC	GCATTTTGAG	TTGTAGATGA	GTGTCTTTTA
l	951	GTTTTCTCTC	TCTTGTTTTG	TATTTCGCTG	TTGAAAGTTT	TCTGTCTAAT
l	1001	ATCGATAAG	TAACAGTGA	A TGTGGGTCT	T ATGGTTATGO	G ATGATATCTA
l	1051	TCTAATAAT	G CTTCTGCCTT	TAAAATGTTO	G ATTTTGAGGO	C ATAACTTCAG
	1101	GTAATATCA	С ТТСТААТТАС	C TAGATAACAA	A TTCATTAGG	TGATTAACAT
	1151	TGATAAAGC	T TTTCCTCATO	G CTAGTTTTZ	A CATGTTTGCT	TCATTTGACA
	1201	TTATCACAG	r TTTTTTTTT	TTTTTTTTTT	G T	
L						


• In Nucleotide BLAST page

Enter Query Sequence	
Enter accession number(s), gi(s), or F/	ASTA sequence(s) 😮 Clear
001 GACCATGGCG GAGGAATTTG GAAGO GATGAAGATT 051 TCTTCTTCGA TTTCGAT TTGATTCTCT TCCGGCGGAG 101 GATTTT GGATTCATGG ATCGGAGAAA TCGAGAATO GATGAGAATC ATCAAGAGGA GAGTTTTG	CCT TCAATCGTAA CTTC AGTCTTCACC CA 151 ATTGATGAAC

• In Nucleotide BLAST page

• In the result page

Sea

	BLAST [®]	» blas	tn suite » re	esults	for R	D-22RB7DSE013		
	< Edit Se	arch	Save Searc	ch	Searc	ch Summary 🗸		
	Job Title		Nucleotide \$	Seque	nce			
RID 22RB7DSE013 Search expires on 05-13 10:31 am Download All								
	Program BLASTN ? <u>Citation</u> ~							
	Database		refseq_rna	<u>See</u>	detail	<u>s</u> 🗸		
	Query ID		Icl Query_48	5815	3			
	Descriptio	n	None			NCBI will keep the sea	rch	
	Molecule t	type	dna			result for a few days. R	etrieve	
	Query Len	gth	1231			the result according to	the RID	
rcł	n info	orts	Distance tre	e of re	esults	Or simply download th		

- In the result page
 - The Descriptions tab gives descriptions of hit sequences.

							_ p	ick	CO	lur	nns	to	shc	<mark>w </mark>
De	scriptions	Graphic Summary	Alignments	Taxonomy						Ζ				
Se	Sequences producing significant alignments Download × Select columns × Show 500 × 3									 Ø 				
Select all 500 sequences selected <u>GenBank Graphics</u> Distance tree of results MSA View									A Viewer					
			Description			Scientific Name	Max Score	Total (Score (Query Cover	E value	Per. Ident	Acc. Len	Acce	ession
	Arabidopsi	<u>s thaliana basic region/leucine zip</u>	<u>per motif 60 (BZIP60), m</u>	RNA		Arabidopsis thal	2221	2221	100%	0.0	100.00%	1231	<u>NM_103</u>	458.3
	PREDICTE	D: Arabidopsis lyrata subsp. vrat	a bZIP transcription facto	or 60 (LOC9327309), I	mRNA	Arabidopsis lyra	1499	1499	87%	0.0	90.04%	1195	<u>XM 021</u>	013469.1
	PREDICTE	<u>D: Capsella rubella bZIP transcrip</u>	otion factor 60 (LOC1789	<u>)7547), mRNA</u>		<u>Capsella rubella</u>	1077	1077	85%	0.0	82.23%	1118	<u>X1 006</u>	305391.2
	PREDICTE	D: Camelina sativa bZIP transcrip	otion factor 60 (LOC1047	79156), mRNA		<u>Camelina sativa</u>	1042	1042	87%	0.0	80.35%	1315	<u>KM_010</u>	503541.1
	PREDICTE	<u>D: Camelina sativa bZIP transtrip</u>	otion factor 60 (LOC1047	<u>57902), mRNA</u>		<u>Camelina sativa</u>	836	1181	84%	0.0	85.83%	1256	<u>XM_010</u>	480685.2
~	PREDICTE	D: Eutrema salsugineum bZIP ra	inscription factor 60 (LO	<u>C18012617), mRNA</u>		<u>Eutrema salsugi</u>	764	764	clic	k ta	o ge	h t	it l	<u>395937.2</u>
	Г								circ		0 50			
		click to get	alignmer	nts					seq	lne	nce	in	o	

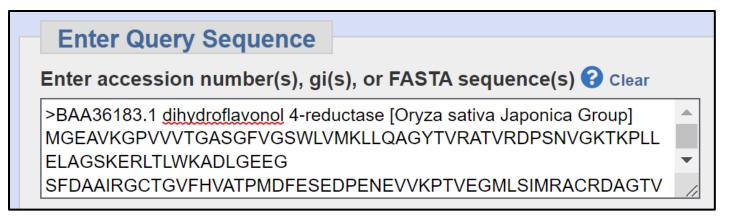
- In the result page
 - The Graphic Summary tab gives alignment locations in the query side.

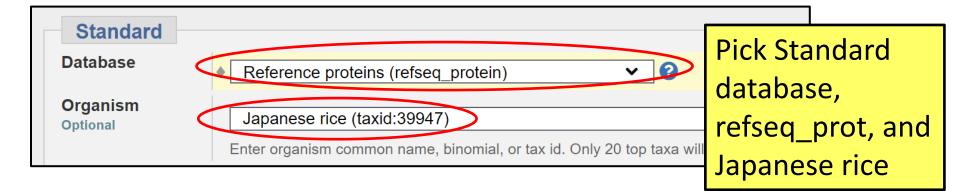
	Descriptions	Graphic Summary	Alignments	Taxonomy							
	□ hover to see the tit	tle 🗼 click to show alignments	3		Alignment Scores	■ < 40	40 - 50	50 - 80	80 - 200	>= 200	0
	500 sequences sele	cted 😮		Distribu	ition of the top 843	Blast Hit	s on 500 s	ubject seq	uences		
				1	 200 400	Query I 600	800 1	000 12	00		
								E			
	Every lin	e segment	-	1 📃				-			
	•	nts one alig		≡ _	_ =						
	•	ain score i					Cli	ck to	get i	nfo ar	nd
(correspo	onding colo	or.	-				e alig			
		0									

- In the result page
 - The Taxonomy tab gives taxonomy distribution of hits.

Descriptions Graphic Summary Alignm	nents Taxonomy			
Reports Lineage Organism Taxon	omy			
500 sequences selected (
Organism	Blast Name	Score	Number of Hits	Description
Eukaryota	eukaryotes		<u>500</u>	
• <u>Magnoliopsida</u>	flowering plants		<u>272</u>	
. <u>Mesangiospermae</u>	flowering plants		270	click to get hit
<u>Pentapetalae</u>	eudicots		211	sequence list
• • • • • <u>rosids</u>	eudicots		<u>145</u>	sequence list
••••• <u>malvids</u>	eudicots		<u>60</u>	
<u>Brassicales</u>	eudicots		<u>21</u>	click to get
<u>Brassicaceae</u>	eudicots		<u>17</u>	
<u>Camelineae</u>	eudicots		<u>11</u>	alignment list
<u>Arabidopsis</u>	eudicots		2	▶
<u>Arabidopsis thaliana</u>	eudicots	2221	1	Arabidopsis thaliana hits
<u>Arabidopsis lyrata subsp. ly</u>	<u>yrata eudicots</u>	1499	1	<u>Arabidopsis lyrata subsp</u>
<u>Capsella rubella</u>	eudicots	1077	1	Capsella rubella hits
<u>Camelina sativa</u>	eudicots	1042	<u>8</u>	<u>Camelina sativa hits</u>

- If there are two or more query sequences,
 - there will be a pull-down menu for selecting results of different queries.

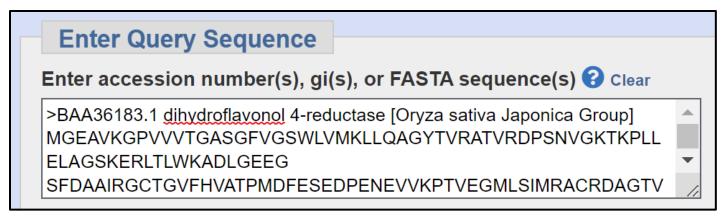

Job Title	2 sequences (seqA)
RID	YR06595P016 Search expires on 12-31 02:17 am Download All
Results for	1:lcl Query_45450 seqA(100bp)
Program	: 1:lcl Query_45450 seqA(100bp) 2:lcl Query_45451 seqB(150bp)
Database	refseq_ma <u>See details</u> ✓
Query ID	lcl Query_45450
Description	seqA
Molecule type	dna
Query Length	100
Other reports	Distance tree of results MSA viewer 🔞

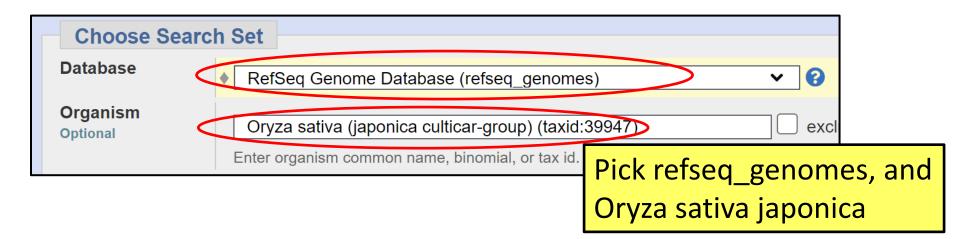

• A BLASTP example

 In this example, we would like to search a rice may-be-true protein sequence BAA36183.1 (an NCBI genbank accession)

>BAA36183.1 dihydroflavonol 4-reductase [Oryza sativa Japonica Group] MGEAVKGPVVVTGASGFVGSWLVMKLLQAGYTVRATVRDPSNVGKTKPLLELAGSKERLTLWKADLGEEG SFDAAIRGCTGVFHVATPMDFESEDPENEVVKPTVEGMLSIMRACRDAGTVKRIVFTSSAGTVNIEERQR PSYDHDDWSDIDFCRRVKMTGWMYFVSKSLAEKAAMEYAREHGLDLISVIPTLVVGPFISNGMPPSHVTA LALLTGNEAHYSILKQVQFVHLDDLCDAEIFLFESPEARGRYVCSSHDATIHGLATMLADMFPEYDVPRS FPGIDADHLQPVHFSSWKLLAHGFRFRYTLEDMFEAAVRTCREKGLLPPLPPPPTTAVAGGDGSAGVAGE KEPILGRGTGTAVGAETEALVK

In BLASTP page


 In this example, we are not getting an 100% identity alignment by querying this rice protein against rice proteins in the NCBI refseq_prot database.


Descriptions	Graphic Summary	Alignments	Taxonomy									
Sequences producing significant alignments Download 🔧 Select columns										Y S∣	how	100 💙 🔞
Select all 7	Select all 70 sequences selected <u>GenPept</u> Graphics Distance tree of results <u>Multiple alignment</u> MSA Viewer											
		Description			Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
tetraketide alp	ha-pyrone reductase 1 [Oryza s	ativa Japonica Group]			Oryza sativa Japonica	268	268	88%	7e-88	41.99%	330	XP 015650629.1
tetraketide alp	<u>ha-pyrone reductase 1 [Oryza s</u>	ativa Japonica Group]			Oryza sativa Japonica	237	237	88%	4e-75	09%	366	XP_015611744.1
anthocyanidin	reductase ((2S)-flavan-3-ol-forn	<u>ning) [Oryza sativa Jap</u>	onica Group]		Oryza sativa Japonica	234	234	85%	3e-74	1.07%	337	<u>XP 015637099.1</u>
cinnamoyl-Co.	<u>A reductase 1 (Oryza sativa Jap</u>		Oryza sativa Japonica	- t	Bes	st a	ligr	nme	ent	t got		
				C	onl	y 4	2%	ide	ent	<mark>ity</mark>		

- WHY?
 - NCBI refseq_protein is a collection of translated nucleotides of coding genes in NCBI's current annotation.
 - The source nucleotide sequence of BAA36183.1 may not be considered as coding in NCBI's current annotation.
 - And it is likely that the nucleotide sequence does exists in the rice genome.

- How to find the source location of protein sequence BAA36183.1?
 - We have a protein query.
 - We want to search it against a genome (a set of nucleotide sequences)
 - We should apply TBLASTN

In TBLASTN page

 In this example, we are not getting an 100% identity alignment by querying this rice protein against rice proteins in the NCBI refseq_prot database.

Descriptions	Graphic Summary	Alignments	Taxonomy								
Sequences producing significant alignments Download \checkmark Select columns \checkmark Show 100 \checkmark ?											
Select all 9 sequences selected GenBank Graphics											
	Description			Ma) Scor		· · ·	E value	Per. Ident	Acc. Len	Accession	
Oryza sativa Ja	aponica Group chromosome 1,	ASM3414082v1	Oryza sativa Japonica Group	383	1663	100%	3e-119	89.52%	43929697	NC 089035.1	
Oryza sativa Ja	<u>aponica Group chromosome 8,</u>	ASM3414082v1	Oryza sativa Japonica Group	160	780	87%	6e-42	2.92%	28605474	NC 089042.1	
Oryza sativa Ja	aponica Group chromosome 9,	ASM3414082v1	Oryza sativa Japonica Group	101	1567	86%	1e-31	30.12%	27474823	NC 089043.1	
Oryza sativa Ja	Oryza sativa Japonica Group chromosome 2, ASM3414082v1 Oryza sativa Japonica Group						nit d	n a:	uen		
got 90% identity							/				

- By examining the alignments, we have three pieces of near 100% identity alignments and close to each other
 - from protein to genome
 - Should mean three exon/CDS regions
 - The "90% identity" in last slide should be an average of many alignments.

-					for checking		
	Range 1: 2590	53200 to	25963829 GenBank Graphic	hit genon	ne regions	t Match 🔺 Pre	evious Match
	Score	Expect	Method	Identities	Positives	Gaps	Frame
	383 bits(984)	3e-119	Compositional matrix adjust.	210/210(100%)	210/210(100%)	0/210(0%)	+3

Range 2: 2596	5 2447 t	to 25962815 GenBank	<u>Graph</u>	ics	▼ <u>Next Match</u> ▲	Previous Mate	ch 🔺 First Match
		Method Compositional matrix	adjust.	Identities 120/123(98%)		Gaps 0/123(0%)	Frame +3
Range 3: 2596	2215 t	o 25962334 GenBank	<u>Graphi</u>	<u>cs</u>	▼ <u>Next Match</u> ▲	Previous Mate	h 🛓 First Match

ScoreExpectMethodIdentitiesPositivesGapsFrame82.4 bits(202)2e-84Compositional matrix adjust.40/40(100%)40/40(100%)0/40(0%)+2

• After some appropriate adjustments

Oryza sativa Japonio	ca Group chromosome 1, ASM	//3414082v1		Run BLAST
NCBI Reference Sequence: NC_0	089035.1			Pick Primers
GenBank FASTA		Link To This View		
	Related information			
1		30 M	43,929,697	Assembly
	. I			BioProject
SNC_089035.1 ▼ Find:	✓ <>>	📑 🛬 🛛 🗙 Tools 🗸 🏟 Tracks 🗸 📩 Downle	oad 🗸 🥲 🤋 🗸	BioSample
500 25,962 K	25,962,500 25,963 K	Mausa maya ta	K	Protein
Sequence		Mouse move to	Ø ♠ exon	Trotom
(U) Alignment for group temple		the exon to show	exon: exo Name: [exo	
Three ex	xons in	its information	Location: 25,9	963,20025,964,026
NCBI an	notation Query 1672029	_	Length: 827 [Qualifiers]	
Genes		e		DRDINATES: polyA evidence D:0006239]
Genes	L0C4326597		inks & Tools	
exon 📃 🔪	exon > exon >		eneID: <u>4326597</u>	<u>(LOC4326597)</u>
(U) BLAST Results for: BAA3610 Queru	83.1 DTHYDROFLAVONOL 4 14 14	Juery 1672029	BLA	
	162 W		LAST to Ger	An annotated gene!
			2	
The three tblastn				
alignments				

 NCBI considers this gene is *pseudo* so it has not protein sequence => BLASTP cannot find a good hit

LOC4326597 dihy	droflavonol 4-reductase-like [Oryza sativa Japonica Group (Japar	iese rice)]	
Gene ID: 4326597, updated	d on 12-Jul-2024		
	L Down	load Datasets	
Summary		* ?	
Gene symbol	LOC4326597		
Gene description	dihydroflavonol 4-reductase-like		
Gene type	e pseudo		
RefSeq status	MODEL		
Organism	Oryza sativa Japonica Group		
Lineage	Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliopsida; Liliopsida;		
	Poales; Poaceae; BOP clade; Oryzoideae; Oryzeae; Oryzinae; Oryza; Oryza sativa		
NEW	Try the new <u>Gene table</u>		
	Try the new <u>Transcript table</u>		

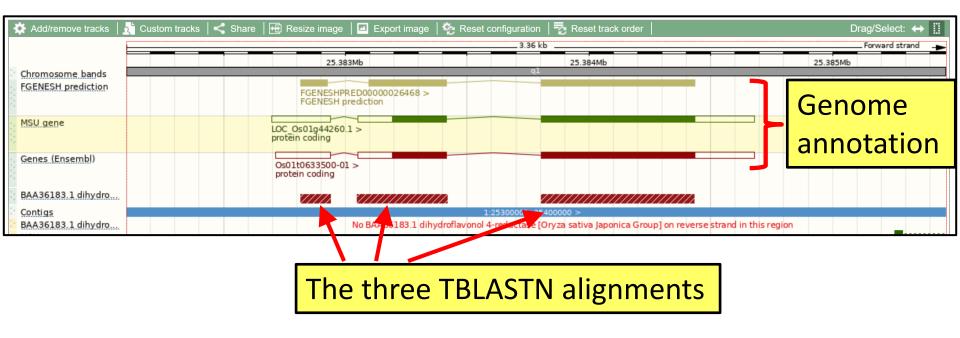
NCBI BLAST services

- A short note on searching against genomes
 - It is possible to search against *draft* genomes that were submitted to NCBI, *if available*
 - By picking "wgs" for Database and input corresponding organism
 - NCBI Taxonomy should help you to find the correct organism name.

Choose Se	earch Set
Database	Whole-genome shotgun contigs (wgs)
Limit by	Organism ○ BioProjectID ○ WGS Project
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown 😯

- For the aim of searching protein source in the genome, Ensembl provides a better integrated interface.
- In this example, we use the same BAA36183.1 protein sequence as the query to search rice genome in the Ensembl Plants database.

– <u>https://plants.ensembl.org/Multi/Tools/Blast</u>


• The operation should be simple.

Sequence data:	>BAA36183.1 DIHYDROFLAVONOL 4-REDUCTASE [ORYZA SATIVA JAPONICA GROU MGEAVKGPVVVTGASGFVGSWLVMKLLQAGYTVRATVRDPSNVGKTKPLLELAGSKERLT LWKADLGEEGSFDAAIRGCTGVFHVATPMDFESEDPENEVVKPTVEGMLSIMRACRDAGT VKRIVFTSSAGTVNIEERQRPSYDHDDWSDIDFCRRVKMTGWMYFVSKSLAEKAAMEYAR EHGLDLISVIPTLVVGPFISNGMPPSHVTALALLTGNEAHYSILKQVQFVHLDDLCDAEI FLFESPEARGRYVCSSHDATIHGLATMLADMFPEYDVPRSFPGIDADHLQPVHFSSWKLL AHGFRFRYTLEDMFEAAVRTCREKGLLPPLPPPPTTAVAGGDGSAGVAGEKEPILGRGTG TAVGAETEALVK
Search against:	Add more sequences (1 sequence added, 29 more sequences allowed) Protein DNA Oryza sativa Japoni X Change species
	 Protein database DNA database Genomic sequence
Search tool:	TBLASTN
Search Sensitivity:	Normal ~

- The first few alignments with %ID close to 100 are all in chromosome 1.
- Click any of it to get an integrated view of the alignments and genome annotation.

🌣 A	dd/remove tracks	💦 Custom tracks 🏼 🗲	Share	🕂 Resize image	🛛 🖾 Export image	e 🍖 Reset	configuration	Reset tra	ck order				C)rag/Select:	↔ []]
		693 bp												Forward strand	
		25,383,800 2		,383,900	25,384,000		25,384,100		25,384,200		25,384,300		25	25,384,400	
Chromosome bands FGENESH prediction		FGENESHPRED000000 FGENESH prediction	26468 >				ql								
MSL	lgene	LOC_Os01g44260.1 > protēin coding													
Gen	es (Ensembl)	Os01t0633500-01 > protein coding													
BAA	36183.1 dihydro		mm	mmm	mmmm		mmm	mmm			mm	mm	mm		
Sea	uence														
Con							1:253000012540	< 00000							
Seq	uence														
	The a	lignmer	nt												

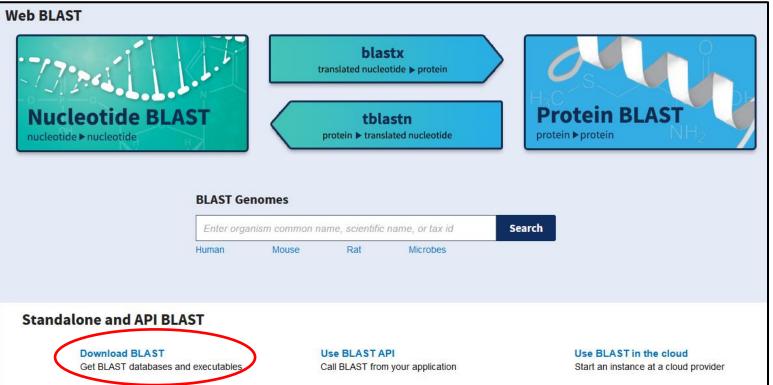
 Appropriate zoom-out and zoom-in would bring us to a view of all three alignments and overlapping genome annotations

A short note on TBLASTN/TBLASTX

- TBLASTN/TBLASTX searches are very sensitive
 - the actual search is done at the protein level
 - less affected by mutations at the nucleotide level
- TBLASTN/TBLASTX would be good at
 - finding footprints of protein/nucleotide in a nucleotide database
 - Including genome database

General guide line of using BLAST

- What to do if no desired search results?
 - Set organism constraint
 - Check numbers of Nucleotide/Protein in corresponding Taxonomy page (for NCBI)
 - Loose E-value threshold
 - BLAST statistics
 - Adjust Maximum target sequences
 - BLAST reports top sequences but not first sequences during the search


General guide line of using BLAST

- What to do if no desired search results? (cont.)
 - Shorten Word size
 - BLAST algorithm
 - Change scoring matrix if the target is divergent from your source
 - for non-BLASTN programs
 - Choose a sensitive BLAST program
 - megablast -> blastn -> blastp -> blastx/tblastn -> tblastx

Short summaries

- NCBI BLAST services provide
 - enriched options for controlling the program and
 - many options of databases.
 - The interface is strongly integrated with the NCBI database.
- Ensembl BLAST services provide a good integration for visualization of alignments and genome annotation

- The way to download BLAST executables
 - The same entry page of BLAST pages
 - Go and follow the download link inside it

- The way to download BLAST executables (cont.)
 - Executables for many platforms are available
 - Windows, MacOS, and Linux

Name	Last modified	Size
Parent Directory		-
ChangeLog	2024-06-25 14:34	85
<pre>ncbi-blast-2.16.0+-1.src.rpm</pre>	2024-06-25 14:31	21M
<pre>ncbi-blast-2.16.0+-1.src.rpm.md5</pre>	2024-06-25 14:35	63
<u>ncbi-blast-2.16.0+-1.x86_64.rpm</u>	2024-06-25 14:31	202M
<pre>ncbi-blast-2.16.0+-1.x86_64.rpm.md5</pre>	2024-06-25 14:35	66
<pre>ncbi-blast-2.16.0+-aarch64-linux.tar.gz</pre>	2024-07-30 11:04	225M
<pre>ncbi-blast-2.16.0+-aarch64-linux.tar.gz.md5</pre>	2024-07-30 11:04	74
<pre>ncbi-blast-2.16.0+-aarch64-macosx.tar.gz</pre>	2024-06-25 14:33	191M
<pre>ncbi-blast-2.16.0+-aarch64-macosx.tar.gz.md5</pre>	2024-06-25 14:35	75
<pre>ncbi-blast-2.16.0+-aarch64.dmg</pre>	2024-06-25 14:33	193M
<pre>ncbi-blast-2.16.0+-aarch64.dmg.md5</pre>	2024-06-25 14:35	65
<u>ncbi-blast-2.16.0+-src.tar.gz</u>	2024-06-25 14:35	27M
<pre>ncbi-blast-2.16.0+-src.tar.gz.md5</pre>	2024-06-25 14:35	64
<pre>ncbi-blast-2.16.0+-src.zip</pre>	2024-06-25 14:35	31M
ncbi-blast-2.16.0+-src.zip.md5	2024-06-25 14:35	61
<pre>ncbi-blast-2.16.0+-universal-macosx.tar.gz</pre>	2024-06-25 14:44	398M
ncbi-blast-2.16.0+-universal-macosx.tar.gz.md5	2024-06-25 14:44	76
<pre>ncbi-blast-2.16.0+-universal.dmg</pre>	2024-06-25 14:43	400M
<pre>ncbi-blast-2.16.0+-universal.dmg.md5</pre>	2024-06-25 14:44	66
ncbi-blast-2.16.0+-win64.exe	2024-06-25 14:30	129M
<pre>ncbi-blast-2.16.0+-win64.exe.md5</pre>	2024-06-25 14:35	63
<pre>ncbi-blast-2.16.0+-x64-linux.tar.gz</pre>	2024-06-25 14:33	246M
ncbi-blast-2.16.0+-x64-linux.tar.gz.md5	2024-06-25 14:35	70
ncbi-blast-2.16.0+-x64-macosx.tar.gz	2024-06-25 14:35	206M
ncbi-blast-2.16.0+-x64-macosx.tar.gz.md5	2024-06-25 14:35	71
ncbi-blast-2.16.0+-x64-win64.tar.gz	2024-06-25 14:31	133M
ncbi-blast-2.16.0+-x64-win64.tar.gz.md5	2024-06-25 14:35	70
ncbi-blast-2.16.0+-x86_64.dmg	2024-06-25 14:34	208M
ncbi-blast-2.16.0+-x86 64.dmg.md5	2024-06-25 14:35	64

- Next slides are a walkthrough under a fresh new Ubuntu24 server
 - Using ASCS: <u>https://ascs.sinica.edu.tw/</u>
- This walkthrough will present
 - install ncbi-blast+ from the ubuntu distribution
 - install most updated ncbi+blast+ from downloaded executables
 - performing TBLASTN/TBLASTX by querying a protein/nucleotide sequence against the rice genome for footprint searches
 - with a few small scripts for post-processing

 Related files including the walkthrough log (process.txt) can be found at

<u>https://maccu.project.sinica.edu.tw/20250513/</u>

- CAUTION: Better not copy command from this PowerPoint file. Office might twist symbols like - ' ".
 - Please refer the walkthrough log process.txt at the above URL.

 1. install ncbi blast+ from ubuntu distribution packages

ubuntu@blast:~\$ sudo apt update

```
ubuntu@blast:~$ sudo apt install ncbi-blast+
(...)
Setting up ncbi-blast+ (2.12.0+ds-4build2) ...
Processing triggers for man-db (2.12.0-4build2) ...
Processing triggers for libc-bin (2.39-0ubuntu8.2) ...
```

```
ubuntu@blast:~$ blastn -version
blastn: 2.12.0+
Package: blast 2.9.0, build Sep 30 2019 01:57:31
```

 2. (optional) install most-updated ncbi blast+ programs

ubuntu@blast:~\$ curl -0
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/n
cbi-blast-2.16.0+-x64-linux.tar.gz

ubuntu@blast:~\$ tar -zxvf ncbi-blast-2.16.0+-x64-linux.tar.gz

```
ubuntu@blast:~$ tail -n 2 ~/.bashrc
PATH="/home/ubuntu/ncbi-blast-2.16.0+/bin:$PATH"
export PATH
```

ubuntu@blast:~\$ source ~/.bashrc

```
ubuntu@blast:~$ blastn -version
blastn: 2.16.0+
Package: blast 2.16.0, build Jun 25 2024 08:58:03
```

• 3. Download genome files

(download genome FASTA file)
ubuntu@blast:~\$ wget http://ftp.ensemblgenomes.org/pub/plants/release61/fasta/oryza_sativa/dna_index/Oryza_sativa.IRGSP1.0.dna.toplevel.fa.gz

(download genome annotation GFF3 files)
ubuntu@blast:~\$ wget http://ftp.ensemblgenomes.org/pub/plants/release61/gff3/oryza sativa/Oryza sativa.IRGSP-1.0.61.gff3.gz

(unzip files)
ubuntu@blast:~\$ gzip -d Oryza_sativa.IRGSP-1.0.dna.toplevel.fa.gz
ubuntu@blast:~\$ gzip -d Oryza sativa.IRGSP-1.0.61.gff3.gz

• 4. Install necessary programs

```
ubuntu@blast:~$ wget
https://maccu.project.sinica.edu.tw/20250513/ExampleData.tar.gz
ubuntu@blast:~$ tar -zxvf ExampleData.tar.gz
ubuntu@blast:~$ wget
https://downloads.sourceforge.net/project/rackj/0.99b/rackJ.tar.gz
ubuntu@blast:~$ tar -zxvf rackJ.tar.gz
```

```
ubuntu@blast:~$ sudo apt install default-jre
ubuntu@blast:~$ sudo apt install bioperl
```

```
ubuntu@blast:~$ tail -n 3 ~/.bashrc
PATH="/home/ubuntu/ncbi-blast-2.16.0+/bin:$PATH"
PATH="/home/ubuntu/rackJ/scripts:$PATH"
export PATH
```

```
ubuntu@blast:~$ source ~/.bashrc
```

• 5. TBLASTN BAA36183.1 against rice genome and corresponding post processing

ubuntu@blast:~\$ **tblastn** -subject Oryza_sativa.IRGSP-1.0.dna.toplevel.fa -query ExampleData/BAA36183.1.fasta -outfmt "7 qaccver qlen sallacc slen pident length nident positive gapopen qstart qend sstart send sframe evalue bitscore" -out BAA36183.1.tblastn.txt -word_size 3 -window_size 0 -evalue 10

(create tmp file for consistentIterator input)
ubuntu@blast:~\$ cat BAA36183.1.tblastn.txt | perl -ne 'chomp; next if /^#/; chomp;
@t=split; if(\$t[11]>\$t[12]) { print join("\t",@t[2,0,12,11,10,9])."\t\$_\n" }else{
print join("\t",@t[2,0,11,12,9,10])."\t\$_\n" }' > BAA36183.1.tblastn.tmp

(maximum gene size in chromosomes)
ubuntu@blast:~\$ cat Oryza_sativa.IRGSP-1.0.61.gff3 | perl -ne 'if(/^#/){}else{
@t=split(/\t/); \$len=\$t[4]-\$t[3]+1; \$max=\$len if \$len>\$max && \$t[2] eq "gene"}
print "\$max\n" if eof'
57648

```
(consistentIterator)
ubuntu@blast:~$ consistentIterator.pl -parapass "-min 20 -max 20 -score 22 -
limitRef 57648 -refKeep -queryKeep -strandKeep -order" BAA36183.1.tblastn.tmp
/home/ubuntu/rackJ/rackj.jar | cut -f 1,8- > BAA36183.1.tblastn.grp.xls
```

- -outfmt <format_string>
 - specify the output format
 - be sure to apply "-help" to get detailed information
 - In our tblastn example, we applied
 - -outfmt "7 qaccver qlen sallacc slen pident length nident positive gapopen qstart qend sstart send sframe evalue bitscore"
 - which means text tabular output with specified information as columns (query accession, query length, subject accession, subject length, ...)

- -evalue <real_number>: E-value cutoff
 - to filter out alignments with E-values larger than the cutoff
- -dust (BLASTN) OR -seg (non-BLASTN)
 - to filter low complexity regions
 - the default setting might be different from one BLAST program to the other, apply -help to check it.
- -num_threads <integer>
 - number of processors to use
 - would *speed up* BLAST search for multi-core CPU

-matrix <matrix string> (default BLOSUM62)
 – specify scoring matrix for protein alignments

Matrix	Best use	Similarity (%)
BLOSUM90	Short alignments that are highly similar	70-90
BLOSUM80	Detecting members of a protein family	50-60
BLOSUM62	Most effective in finding all potential similarities	30-40
BLOSUM30	Longer alignments of more divergent sequences	<30

- -word_size <integer>: index word size (for the lookup table)
 - Increasing this parameter would increase search speed at a price of sensitivity.
- -window_size <integer>:
 - Set this to 0 to apply 1-hit algorithm to increase sensitivity at a cost of search speed.
 - 1-hit may be needed for short query sequence.

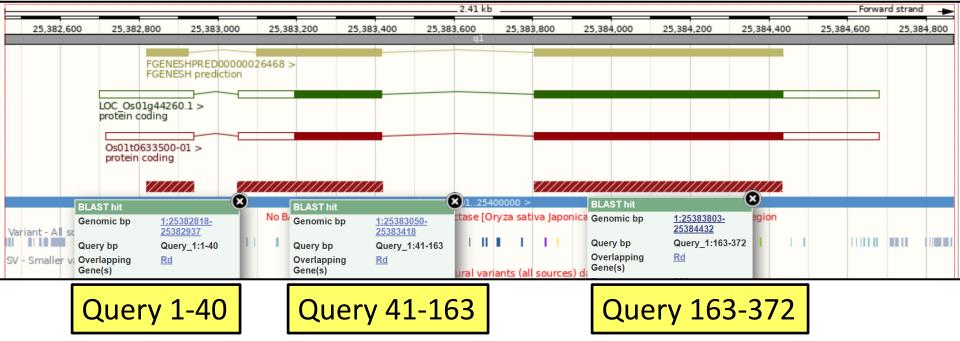
• 6. (optional) TBLASTX AB003496.1 (source nucleotide of BAA36183.1) against rice genome and corresponding post processing

ubuntu@blast:~\$ tblastx -subject Oryza_sativa.IRGSP-1.0.dna.toplevel.fa
-query ExampleData/AB003496.1.fasta -out AB003496.1.tblastx.out -evalue
10

ubuntu@blast:~\$./ExampleData/parseTBLASTX.pl AB003496.1.tblastx.out >
AB003496.1.tblastx.txt

```
(create tmp file for consistentIterator input)
ubuntu@blast:~$ cat AB003496.1.tblastx.txt | perl -ne 'chomp; next if
/^#/; chomp; @t=split; if($t[11]>$t[12]) { print
join("\t",@t[2,0,12,11,10,9])."\t$_\n" }else{ print
join("\t",@t[2,0,11,12,9,10])."\t$_\n" }' > AB003496.1.tblastx.tmp
```

```
(consistentIterator)
ubuntu@blast:~$ consistentIterator.pl -parapass "-min 20 -max 20 -score
22 -limitRef 57648 -refKeep -queryKeep -strandKeep -order"
AB003496.1.tblastx.tmp /home/ubuntu/rackJ/rackj.jar | cut -f 1,8- >
AB003496.1.tblastx.grp.xls
```


- The use of the consistentIterator.pl script is to partition fragmented BLAST alignments into *co-linear and non-overlapping* groups.
 - We saved the grouped TBLASTN and TBLASTX results in BAA36183.1.footprint.xlsx.

alnGroup	chr	identity	aln length	qstart	qend	sstart	send	frame	evalue	bitscore		
1	1	100	40	1	40	25382818	25382937	1	1.74E-84	82.4		
1	1	97.561	123	41	163	25383050	25383418	2	1.74E-84	253		
1	1	100	210	163	372	25383803	25384432	2	2.58E-119	383		
					1	1 st group of alignments in						

1st group of alignments in sheet BAA36183.1.tblastn.grp of Excel file BAA36183.1.footprint.xlsx

 This 1st co-linear and non-overlapping alignment group visualized in the Ensembl website.

– Our query is 372 AA's.

Short summaries

- Standalone BLAST programs give us abilities to
 - programmatically run BLAST programs,
 - designate BLAST output information, and
 - postprocessing the outputs.
- The consistentIterator.pl script can be used to
 - group low similarity and fragmented BLAST alignments into *co-linear and non-overlapping* groups.

Short summaries

- Grouped alignments with high coverage to the query usually means a confident footprint.
- In practice, we ever see 30 alignments with bitscore<100 (low similarity) been grouped together for a 2500bp TBLASTX query.

- Highly mutated footprint.

Finally

- Thank you for your attentions.
- I am willing to answer and/or discuss questions via email or in some other interactive form.
 - Please don't hesitate to let me know if you have any questions.