基因與臨床資料的整合運用

盧子彬 Tzu-Pin Lu <u>tplu@ntu.edu.tw</u> Institute of Health Data Analytics and Statistics, National Taiwan University 05/15/2025

Sep 2018 Quest: Science for South Africa

https://www.shutterstock.com/zh/image-vector/big-data-medicine-digitization-all-sorts-1363311101

Precision Health Start from a healthy state before illness

Predict, prevent, diagnose, and treat diseases accurately based on genetic, environmental, lifestyle, and molecular differences.

Big data in biomedical field

https://www.seekpng.com/ima/u2y3w7q8i1e6a9i1/

From big data to decision

https://www.frontiersin.org/articles/10.3389/fdigh.2018.00013/full

Our role-> Fortune telling

Our goal

Medical and Health Big Data

Taiwan Cancer Registry

Taiwan Cancer Registry

- Nationwide population-based cancer registry (population : 23+ million)
- since 1979 (the first nationwide PBCR in Asia)
- +100,000 cancer patients per year
- Case reporting : 219 hospitals with beds >50 in Taiwan
- Legally required to report : Cancer Control Act (enacted 2003)

Cancer Registration Items (total 115)

Item name (example)

CASE IDENTIFICATION

Reporting hospital code Medical record number Personal identity number Sex Date of birth **Residence code CANCER IDENTIFICATION** Age at diagnosis Sequence number Class of case Date of diagnosis Primary tumour site (ICD-O) Laterality Histology (ICD-O) Grade – Clin / Path **Diagnostic confirmation** Date of first microscopic confirmation

Item name (example) **STAGE OF DIEASE AT INITIAL DIAGNOSIS** Date of surgical diagnostic and staging procedure Surgical diagnosis & staging procedure TNM – Clin T /N /M TNM – Clin stage group TNM – Path T /N /M TNM – Path stage group Stage (prefix/suffix) descriptor - Clin / Path AJCC staging edition Other staging system Other staging - Clin / Path Size of tumour Perineural invasion Lymph-vascular invasion Number of examined nodes Number of positive nodes

Quality Indicators for Taiwan Cancer Registration Database

					Ye	ar				
Criterion	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Completeness,%	97.7	98.4	98.4	98.2	98.2	98.4	98.3	98.2	98.4	98.1
DCO %	0.8	0.7	0.9	0.9	0.8	0.9	0.8	0.8	0.7	0.7
M/I %	44.8	44.3	44.0	43.8	43.5	43.9	41.7	40.9	40.7	41.1
MV %	91.2	91.4	91.8	92.3	92.6	92.8	93.2	93.5	94.1	94.4
Timeliness, month	17	17	17	16	16	14	14	14	14	14

Note: DCO %: death certificate only (DCO) percentage

M/I: mortality verse incidence ratio (only included invasive cancer cases)

MV%: microscopically verified percentage

Timeliness: duration from the date of diagnosis to the date when the database close

Most common type of cancer incidence in 2018 among women

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. Data source: Globocan 2018 Map production: IARC World Health Organization

Incidence and mortality rates of breast cancer patients in different races

Breast Cancer Incidence by Race (2013) CDC's National Program of Cancer Registries and National Cancer Institute's Surveillance, Epidemiology, and End Results program

meta-chart.com

Breast Cancer Mortality Rates by Race (2008 to 2012) Surveillance, Epidemiology, and End Results program, National Cancer Institute, 2015

meta-chart.com

Ratio of mortality rate to incidence rate for breast cancer

Mortality rate compared to incidence rate for invasive breast cancer

Study aims

 To develop the prognostic models to predict the breast caner-specific survival and overall survival for breast cancer patients

 To investigate the racial difference between the Asian population and non-Asian population

Adjuvant online

Imagine the case: **40 years old, chemobenefit : 3%**% **Receive treatment or not ?**

Patient Information

Age:	58	No additional therapy:
Comorbidity:	Perfect Health	
ER Status:	Positive 👻	75.0 alive and without cancer in 10 years.
Tumor Grade:	Grade 3 💌	4.4 die of other causes.
Tumor Size:	0.1 - 1.0 cm 💌	With hormonal therapy: Benefit = 10.8 without relapse.
Positive Nodes:	0 💌	
Calculate For:	Relapse 💌	With chemotherapy: Benefit = 4.4 without relapse.
10 Year Risk:	21 Prognostic	
Adjuvant The	erapy Effectiveness	With combined therapy: Benefit = 13.0 without relapse.
Horm: Arom	atase Inhibitor for 5 yrs	
Chemo: CA	*4, CMF, FE(50)C*6	

Figure

Caption

Figure 1. Prognostic data based on populationbased analysis with Adjuvant! Online version 8.0 [4].

This figure was uploaded by <u>Barbara A</u> <u>Pockaj</u>

Content may be subject to copyright.

Analysis flow chart

Fig. 1 Flow diagram of exclusion criteria and statistical analysis

1. Cox proportional hazard model

2. Multivariable fractional polynomial (MFP) approach

Calibration of prediction performances

	Breast cancer-sp	ecific survival		Overall survival		
Calibration year	Observed	Predicted	P value	Observed	Predicted	P value
Training data						
1	51	52.64	0.821	83	83.87	0.924
2	229	236.75	0.615	316	317.83	0.918
3	363	373.45	0.589	481	475.71	0.808
4	425	422.94	0.920	569	544.60	0.296
5	348	350.04	0.913	466	456.30	0.650
6	220	215.38	0.753	290	275.41	0.379
Testing data						
1	33	25.28	0.125	47	41.21	0.367
2	109	114.89	0.583	142	157.12	0.228
3	177	182.81	0.668	237	237.48	0.975
4	202	206.35	0.762	266	270.31	0.793
5	176	172.28	0.777	227	226.75	0.987
6	96	104.32	0.416	129	133.50	0.697

Table 4 Model calibration of breast cancer-specific mortality regressed on prognostic variables in SEER data

Calibration of prediction performances in different populations

Table 4 Model calibration of breast cancer-specific mortality regressed on prognostic variables in SEER data

	Breast cancer-sp	ecific survival		Overall survival			
Calibration year	Observed	Predicted	P value	Observed	Predicted	P value	
White							
1	236	132.35	< 0.001	416	245.11	< 0.001	
2	472	432.07	0.055	805	666.75	< 0.001	
3	554	570.83	0.481	905	834.99	0.015	
4	378	426.84	0.018	617	628.31	0.652	
5	-	-	-	-	-	-	
6	-	-	-	-	-	-	
Black							
1	47	29.32	0.001	87	43.98	< 0.001	
2	132	90.05	< 0.001	194	115.66	< 0.001	
3	138	115.04	0.032	195	141.00	< 0.001	
4	99	86.07	0.164	146	106.57	< 0.001	
5	-	-	-	-	-	-	
6	-	-	-	-	-	-	
Asian							
1	10	7.57	0.377	23	13.93	0.015	
2	22	24.51	0.612	43	38.03	0.421	
3	21	29.84	0.106	43	44.16	0.862	
4	17	23.31	0.191	29	33.42	0.445	
5	-	-	-	-	-	-	
6	-	_	_	_	-	-	

Breast cancer survival prediction by Taiwan Cancer Registry data¹

Welcome to the Taiwan Breast Cancer Prediction System!

The prediction system is constructed using clinical data from 90,841 breast cancer patients in the Taiwan Cancer Registry database between 2011 to 2015, and validated using clinical data from 49,374 breast cancer patients in the U.S.-based Surveillance, Epidemiology and End Results (SEER) database. To start, please select the information below.

Breast cancer survival prediction by Taiwan Cancer Registry data²

Treatment options		
Hormone/Steroid therapy	No	Yes
Hormone/ steroid therap	y is ava	ilable when ER status is positive
Chemotherapy	No	Yes
Radiotherapy	No	Yes
Targeted	No	Yes
therapy		

Mortality rate compared to incidence rate for invasive breast cancer

Results

Please note that the patients need to consult with their medical doctors before making any decision.

aldeT	The analysis is for women who had undergone surgery. The table shows the 1-, 3- and 5-year survival rates, based on the treatment you have selected.					
Texts	1 3 5 7					
"	Treatment	Additional Benefit	Overall Survival(%)			
	Surgery only	-	33.72%			
	+Hormone/Steroid therapy	27.27%	60.99%			
	+Chemotherapy	11.46%	72.45%			
	+Radiotherapy	6.72%	79.17%			
	+Targeted therapy	7.79%	86.96%			

Colon cancer

Ann Surg Oncol https://doi.org/10.1245/s10434-021-1064

ORIGINAL ARTICLE – GLO

Predicting Colon Ca Population Using Na

Han-Ching Chan, MS¹, Chi-Che Kuan-Hung Yeh, BS², Wen-Chu Skye Hung-Chun Cheng, MD⁵, *z*

Colon cancer survival prediction by Taiwan Cancer Registry data

Head and neck cancer

Journal of Epidemiology and Global Health https://doi.org/10.1007/s44197-024-00196-7

RESEARCH ARTICLE				
		Inclusion of 67,828 patient from Jan. 01, 20	ts diagnosed with H&N cancer 13 to Dec. 31, 2018	
Population-Based Prognostic Models for	Exclusion	criteria thout escalular any teratment at the	•	
Welcome to the Taiwan Head and Neck Cancer Prediction The prediction system is constructed using clinical data	n System! from 49,137	head and neck ca	ncer patients in the	

Taiwan Cancer Registry database between 2013 to 2018.

To start, please select the information below.

			Font Size: Small Medium Large
Age ?	1	Sex	Male Female
Age must be between 20 and 80		Tsumor site	
Tumor size	1	Oral Cavity Oropharynx Hypopha	rynx Salivary Glands Larynx
The unit of tumor size is millimeter (mm)			
Height(cm)	1	Maximum lymph node ?	
Weight(kg)	-	No Metastasis 1-9 mm 10-19 mm 50-59 mm >= 60 mm Unknown	20-29 mm 30-39 mm 40-49 mm
Pathological stage	1 2 3 4 Unknown	Alcohol consumption	Never Sometime Usually
		Tobacco smoking	false true
		44,410 White patients in the SEER data 4,588 Black patients in the SEER data 2.001 Asian patients in the SEER data	Reset Submit

Ovarian cancer

FIG. 1. Inclusions and exclusion criteria for study subjects.

Can we do better?

- In addition to clinical variables, what can we have?
 - Genetics (DNA)
 - Gene expression (RNA)

Microarray

Make cDNA reverse transcript Label cDNAs with fluorescent dyes

http://thunder.biosci.umbc.edu/classes/biol414/spring2007/index.php

Gene expression microarray data

Samples

				C				
1	ID	GSM54010	GSM54010	GSM5401.	1GSM54011	GSM5401.	IGSM54011	GSM54011
2	1007_s_at	12.61478	11.84253	12.52451	12.55463	12.9567	12.24632	13.00839
3	1053_at	7.903758	8.143369	8.830648	9.397681	8.765905	8.194851	8.622835
4	117_at	7.983277	8.125691	7.849639	7.965634	8.694988	8.272472	8.231823
5	121_at	10.00636	10.05648	10.46377	9.743123	9.803373	9.160232	9.037198
6	1255 <u>g</u> at	1.52182	2.766601	3.275003	2.216496	2.06613	2.642343	1.766505
7	1294_at	10.05307	9.986836	11.6857	9.058527	9.671435	10.54355	10.07772
8	1316_at	8.796633	9.524082	6.998067	6.309369	6.489771	6.672373	6.020401
9	1320_at	5.952997	6.743085	6.398354	6.88609	6.493907	6.956016	6.456581
10	1405_i_at	9.002697	9.904427	12.43649	10.83128	8.803543	10.77742	11.47862

Affymetrix u133plus2.0 : 54675 probes

Probes

PAM50

J Clin Oncol . 2009 Mar 10;27(8):1160-7. doi: 10.1200/JCO.2008.18.1370.

Fig 1. PAM50 intrinsic subtype prognosis for relapse-free survival (RFS). (A) Outcome predictions according to the four tumor subtypes in a test set of 710 node-negative, no systemic adjuvant therapy patients. (B) Outcome by subtype in the subset of patients with estrogen receptor (ER) –positive disease from Figure 1A. (C) Outcome by subtype in patients with ER-negative disease. (D) Outcome by subtype in HER2*clin*-positive patients.

GEO datasets in this study

Figure 1. Study flow diagram. By applying searching filter, 177 studies were found. A total of eight data sets met selection criteria in further evaluation.

Abbreviations: GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas.

Sample characteristics

Table 1. Comparison of Estimation of Stromal and Immune Cells in Malignant Tumours Using Expression Data (ESTIMATE) immune scores of breast tumors between Asian and Western patients

Tumor subtype	Asian patients	Western patients	<i>p</i> value
All subtypes	1,187	1,014	<.0001
Luminal A	958	866	.2009
Luminal B	1,091	823	.0001
HER2-enriched	1,513	1,275	.0593
Basal	1,477	1,381	.4242
Normal-like	1,317	1,187	.5053

Abbreviation: HER2, human epidermal growth factor receptor 2.

Overall survival curves between Asian and Western populations

Study aims

 To further divide the breast cancer samples based on PAM50 subtypes into different subgroups based on the tumor infiltration lymphocytes (TILs)

 To elucidate the prognostic impact of TILs in breast cancer patients between Asian and Western populations

Tumor infiltrating lymphocytes (TILs)

Impact of TILs in prognosis in cancer patients

Current Opinion in Immunology

36

ESTIMATE algorithm

Immune cell scores in different PAM50 subtypes

 Table 2. Associations of Estimation of Stromal and Immune Cells in Malignant Tumours Using Expression Data (ESTIMATE)

 immune score (high versus low) with OS and DFS, stratified by race and PAM50 subtype (adjusted for age and stage)

	OS		DFS	
Race, PAM50 subtype	HR (95% CI)	p value	HR (95% CI)	p value
Asian				
All subtypes ^a	0.45 (0.28-0.71)	<.0001	0.51 (0.34-0.77)	.0014
Luminal A	1.34 (0.46-3.91)	.5979	0.83 (0.35-1.95)	.6713
Luminal B	0.51 (0.24-1.09)	.0831	0.76 (0.39-1.48)	.4200
HER2-enriched	0.53 (0.21-1.39)	.1995	0.44 (0.19-1.04)	.0610
Basal	0.05 (0.01-0.37)	.0037	0.06 (0.01-0.44)	.0056
Normal-like	0.46 (0.03-7.98)	.5925	NR ^b	
Western				
All subtypes ^a	0.64 (0.44-0.94)	.0206	0.75 (0.60-0.92)	.0061
Luminal A	0.80 (0.39-1.61)	.5273	2.09 (1.11-3.94)	.0226
Luminal B	0.66 (0.29-1.52)	.3304	0.92 (0.65-1.29)	.6245
HER2-enriched	0.66 (0.23-1.94)	.4544	0.40 (0.24-0.69)	.0010
Basal	0.58 (0.28-1.22)	.1532	0.60 (0.42-0.85)	.0040
Normal-like	0.61 (0.20-1.84)	.3781	1.33 (0.38-4.65)	.6525

^aAdditional adjustment for PAM50 subtype.

^bCox regression failed because of collinearity.

Abbreviations: CI, confidence interval; DFS, disease-free survival; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; NR, not reached; OS, overall survival; PAM50, Prediction Analysis of Microarray 50.

KM curves further divided by the abundances of TILs

CIBERSORT algorithm

Nature methods | VOL.12 NO.5 | MAY 2015 | 453

Impact of prognosis in breast cancer patients between Asian and Western populations Asian Western

Overall survival Asian

Α

В

Western

Figure 4. Prognostic effects of individual immune cell subsets on overall survival. (A): Effects of cell subsets on Asian patients. Adjusted for age, stage, and Prediction Analysis of Microarray 50 (PAM50) subtype, activated CD4 T cells, memory B cells, and CD8 T cells were associated with better prognosis, whereas M2 macrophage was associated with worse prognosis. (B): Effects of cell subsets on Western patients. The effects of activated CD4 T cells, CD8 T cells, and M2 macrophages were similar in Western patients with breast cancer. * indicates p < .05.

Abbreviations: CI, confidence interval; NK, natural killer.

Ovarian cancer

	New c	ease	Death
2020 Globa	al 313,95	59	207,252
2019 Taiwa	n 1,559		683
Stage	Taiwan	USA (SEER)	
Ι	43.60%	22%	
II	8.20%	8%	5 week environt for all stages
III	25.80%	37%	 Jean survival for all stages Taiwan: 63.68%
IV	12.40%	28%	• SEER (USA): 56%
Unknown	10.00%	6%	

All Stages

NCCN guideline clinical practice guideline of gynecological oncology

Development of a GE model

Genetic algorithm (GA)-Xgboost modeling (optimization)

Sample	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	Probe 7	Probe 8
	8.21	6.74	11.10	3.76	6.34	6.57	7.36	4.59
	6.09	6.61	10.37	3.65	6.38	5.47	8.30	4.45
Û	8.95	7.11	10.94	4.54	6.08	5.88	7.60	5.38
Ś	9.22	7.05	10.48	3.87	6.09	6.38	5.02	4.90
	9.27	6.73	11.28	3.69	6.15	6.32	6.95	5.30
W	8.21	7.21	11.29	3.94	6.51	5.86	7.10	4.70

Model: assuming we have K trees

$$\hat{y}_i = \sum_{k=1}^K f_k(x_i), \quad f_k \in \mathcal{F}$$

Objective

$$Obj = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k)$$

Training loss Complexity of the Trees

$$\Omega(f_t) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^T w_j^2$$

Number of leaves

L2 norm of leaf scores

Prediction performances in external datasets

	Accuracy	Sensitivity	Specificity	F1-score
GA-XGBoost				
GSE26193 (internal validation set)	0.714	1	0.524	0.737
Combined external validation set*	0.589	0.824	0.385	0.651
GSE30161	0.580	0.739	0.444	0.618
GSE19829	0.478	1	0.143	0.600
GSE63885	0.630	0.833	0.432	0.690
Forward logistic regression				
GSE26193 (internal validation set)	0.600	0.533	0.650	0.533
Combined external validation set*	0.514	0.456	0.564	0.466
GSE30161	0.620	0.652	0.593	0.612
GSE19829	0.478	0.556	0.429	0.455
GSE63885	0.452	0.306	0.595	0.355
LASSO regression				
GSE26193 (internal validation set)	0.543	0.643	0.476	0.529
Combined external validation set*	0.555	0.544	0.564	0.532
GSE30161	0.520	0.478	0.556	0.478
GSE19829	0.565	0.889	0.357	0.615
GSE63885	0.575	0.500	0.649	0.537

Survival differences between patients with high and low risks

* NA: The range of 95% of confident interval is between 0 and infinity because no event occurs in low risk group during the observed period.

20,000 * 1,500 * 0.05 = 1,500,000 Chemo Patient Percentage Cost per month

Hsiao et al. JARE 2020

Can we do better? (a little bit earlier)

- In addition to clinical variables, what can we have?
 - Genetics (DNA)
 - Gene expression (RNA)

Angelina Jolie Has Ovaries Removed After Doctor Detects Possible Sign of Early Cancer

Share on Facebook

Angelina Jolie

BY K.C. BLUMM 03/24/2015 AT 01:05 AM EDT

It was the phone call every woman hopes she never gets.

SUBSCRIBE NOW

After having a preventive double mastectomy two years ago to reduce her risks of getting cancer, Angelina Jolie – who lost her mother, grandmother and aunt to the disease – got a call from her doctor two weeks ago with results from a recent blood test. As she writes in a *New York Times* op-ed piece published early Tuesday, the doctor told her that the test showed markers that could be a sign of early cancer.

"I went through what I imagine thousands of other women have felt," Jolie, 39, writes. "I told myself to stay calm, to be strong,

and that I had no reason to think I wouldn't live to see my children grow up and

Angelina Jolie's cancer risk

https://innovatemedtec.com/content/the-angelina-jolie-pitt-cancer-story

Angelina effect -> more people get screening

https://edition.cnn.com/2015/03/24/health/angelina-jolie-did-the-right-thing/index.html

Global Biobanks

ocation	Biobank	N (goal)
Canada	CARTaGENE biobank ¹¹⁹	43,000
JSA	All of Us ³³ Million Veteran Program ⁴⁹	1,000,000 > 600,000
lexico	The Mexico City Prospective Study52	150,000
celand	deCODE Genetics	500,000
IK	UK Biobank ³⁸ Avon Longitudinal Study of Parents and Children (ALSPAC) ²⁰	500,000 > 15,000
letherlands	Lifelines Biobank ¹²⁰	> 167,000
Denmark	Danish National Biobank ¹²¹	
lorway	HUNT - Nord-Trøndelag Health Study ¹²²	125,000
Sweden	Biobank Sweden	
inland	FinnGen	500,000
stonia	Estonian Biobank ¹²³	52,000
srael	Project 10K	10,000
audi Arabia	Saudi Biobank	200,000
atar	Qatar Biobank ¹²⁴	60,000
China	China Kadoorie Biobank ⁵¹ Guangzhou Biobank ¹²⁵	> 500,000 30,000
apan	BioBank Japan ¹²⁶	200,000
lorea	National Biobank of Korea ¹²⁷	500,000
aiwan	Taiwan Biobank ¹²⁸	200,000

Nat Med . 2020 Jan;26(1):29-38.

Taiwan Biobank

Taiwan Biobank Data

Whole Genome Sequencing (Taiwan biobank)

Rare variants discovery by extensive whole-genome sequencing of the Han Chinese population in Taiwan: Applications to cardiovascular medicine

Jyh-Ming Jimmy Juang^a, Tzu-Pin Lu^b, Ming-Wei Su^c, Chien-Wei Lin^c, Jenn-Hwai Yang^d, Hou-Wei Chu^c, Chien-Hsiun Chen^d, Yi-Wen Hsiao^b, Chien-Yueh Lee^e, Li-Mei Chiang^e, Qi-You Yu^b, Chuhsing Kate Hsiao^b, Ching-Yu Julius Chen^a, Pei-Ei Wu^d, Chien-Hua Pai^c, Eric Y. Chuang^{e,*}, Chen-Yang Shen^{c,d,*}

Check for

Journal of Advanced Research 30 (2021) 147–158

Variants related to pharmacogenomics in different populations

Table 4

Examples of pharmacogenetics in clinical scenarios and comparisons of minor allele frequency across different populations.

Drug name	Gene	Genetic			Minor Allele	Frequency									Clinical application or impact
		variants	Ref.	Alt.	1KTWWGS	1000GCHB	1000GCHS	1000G JPT	gnomADEAS	gnomAD SAS	1000GCEU	gnomAD non- Finish	gnomAD AFR	ChinaMap	
Warfarin	VKORC1	rs9923231	С	Т	0.865	0.956*	0.890	0.903	0.901*	NA	0.429*	0.368*	0.102*	NA	Weekly warfarin dosage
	CYP2C9	rs1057910 rs1057910 rs1799853	A A C	C G T	0.034 NA 0.001	0.038 NA <0.000	0.047 NA 0.004	0.019 NA <0.000	0.033 NA 0.0004	0.109* NA 0.047*	0.066 NA 0.152*	0.068* <0.000 0.127*	0.012* 0.00007 0.021*	0.0459 NA 0.0012	
Clopidogrel	CYP2C19*2	rs4244285	G	A	0.348	0.335	0.352	0.3220	0.308*	0.325	0.131*	0.147*	0.178*	0.3117	Affects the metabolism of clopidogrel and the risk of coronary stenting
		rs3758580 rs181297724 rs181297724 rs17878459 rs778258371 rs144036596 rs144036596 rs144036596		T C A C A C T	0.305 0.0048 NA <0.000 <0.000 NA NA	0.335 <0.000 NA <0.000 NA <0.000 NA	0.352 0.004 NA <0.000 NA <0.000 NA	0.3220 0.009 NA <0.000 NA <0.000 NA	0.310 0.004 NA <0.000 NA 0.0001 NA NA	0.327 0.00007* NA 0.0078* NA 0.0001 NA	0.131 <0.000 NA 0.0250 NA <0.000 NA	0.147* 0.0012* <0.000 0.033 <0.000 0.0003 0.00005 0.00001	0.179* 0.00004* 0.008 <0.000 0.0002 <0.000 <0.000	0.3121 0.0053 NA 0.00024 0.00005 0.00014 NA	thrombosis or cardiovascular events
	CYP2C19*3	rs4986893 rs763625282 rs144036596 rs144036596 rs144036596	G G T G G	T A A A C T	<0.000 0.055 <0.000 <0.000 NA NA	<0.000 0.044 NA <0.000 NA NA	<0.000 0.048 NA <0.000 NA NA	 <0.000 0.072 NA <0.000 NA NA 	<0.000 0.063 NA 0.00011 NA NA	<0.000 0.004* NA 0.0001 NA NA	<0.000 0* NA <0.000 NA NA	<0.0001 <0.00025* <0.000 0.00029 0.00005 0.00001	<0.000 <0.000 0.00038* <0.000 0.00021 <0.000 <0.000	NA 0.0485 0.0005 0.00014 NA NA	

* Indicates P value < 0.01 compared with 1KTW-WGS; AFR: African/African American; CEU: European; CHB: Chinese-Bejing; CHS: Chinese-South; JPT: Japanese; EAS: East Asian; NA: not available; SAS: South Asian; Ref: reference; Alt: alternate; CHC: chronic hepatitis C; <0.000 means the actual number is not provided in the databases, but it should be less than < 0.000001.

DNA imputation

• To get genotypes of loci without being sequenced

Multi-ethnic Imputation System (MISystem)

Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

Original Research

Multi-ethnic Imputation System (MI-System): A genotype imputation server for high-dimensional data

Amrita Chattopadhyay^a, Chien-Yueh Lee^{b,1}, Ying-Cheng Shen^{c,1}, Kuan-Chen Lu^d, Tzu-Hung Hsiao^e, Ching-Heng Lin^e, Liang-Chuan Lai^{a, f}, Mong-Hsun Tsai^{a, g, h}, Tzu-Pin Lu^{a, d, i, j,*}, Eric Y. Chuang^{a, c, k,*}

Multi-ethnic Imputation System

https://misystem.cgm.ntu.edu.tw/

Brugada Syndrome (BrS)

- 4% 20% sudden cardiac death
- Incidence

- 1 to 5 per 10,000 in white people
- 12 per 10,000 in southeast Asian
- 10 per 10,000 in Taiwanese
- Normal heart structure, normal heart ECG
- Normal image and biochemical test

Validations of the 3 risk loci in Taiwanese

Table 2. Validation of the Previously Reported SNPs in the Taiwanese BrS Patients

	Chromosome Position (Build 37)	Imputed or Original	Gene or Nearest Gene	Risk Allele	Protective Allele	RAF (190 Cases /15981 Controls) in Taiwanese	MAF (Case/ Control) in Whites	All BrS Patie Health	OR in the Previous GWAS ¹⁴	
SNPs causing susceptibility to BrS (set 1)								P value*	OR	OR
rs11708996	Chr3:38633923	Original	SCN5A	С	G	0.011/0.007	0.23/0.15	4.27×10 ⁻⁰¹	1.5 (0.46–3.57)	1.64 (1.30–2.07)
rs10428132	Chr3:38777554	Imputed	SCN10A	Т	G	0.305/0.193	0.69/0.41	5.92×10 ⁻⁰⁸ †	1.84 (1.47–2.29)	3.00 (2.45–3.69)
rs9388451	Chr6:126090377	Original	HEY2, NCOA7	С	Т	0.818/0.742	0.65/0.50	7.94×10 ⁻⁰⁴ †	1.56 (1.21–2.05)	1.83 (1.51–2.22)

Table 3.Comparisons of Disease Risk Using the PRSModels Generated by the 3 Sets of SNPs

PRS Range	Odds Ratio					
Set 1 SNPs						
0%-20%*	1					
21%-40%	0.16 (0.06–0.42)					
41%-60%	2.10 (1.36–3.22)†					
61%-80%	2.03 (1.32–3.13)†					
81%-100%	0.77 (0.45–1.32)					

Mayo Clinic Genetic Heart Rhythm Clinic, USA

Juang et al. Cir Genom Precis Med. 2020 Aug 13(4):e002797

A GWAS in breast cancer

113 Significant SNPs

Racial differences

Fig. 1 | Ancestry of GWAS participants over time, as compared with the global population. Cumulative data, as reported by the GWAS catalog76. Individuals whose ancestry is 'not reported' are not shown.

Odds ratios of PRS in different PAM50 subtypes

		OR	95% CI lower	95% CI upper	P values			OR	95% CI lower	95% CI upper	P values
	20-40%	1.25	0.82	1.91	0.29		20-40%	1.00	0.28	3.57	1.00
All breast	40-60%	1.98	1.35	2.94	$4.7 imes 10^{-4}$	Basal-like	40-60%	1.48	0.48	4.94	0.48
cancers	60-80%	1.77	1.20	2.65	4×10^{-3}		60-80%	1.64	0.54	5.40	0.37
	80-100%	5.33	3.79	7.66	1.3×10^{-23}		80-100%	2.28	0.81	7.21	0.11
	20-40%	1.28	0.70	2.38	0.42	Her2- enriched	20-40%	1.00	0.28	3.61	1.00
	40-60%	1.85	1.05	3.32	0.031		40-60%	1.00	0.28	3.61	1.00
Luminal A	60-80%	3.22	1.92	5.59	7×10^{-6}		60-80%	1.32	0.40	4.53	0.63
	80-100%	3.55	2.13	6.14	7.7×10^{-7}		80-100%	2.28	0.80	7.28	0.12
	20-40%	3.91	1.12	19.10	0.046						
Luminal B	40-60%	2.31	0.58	12.00	0.32						
	60-80%	4.55	1.34	21.93	0.016						
	80-100%	4.23	1.23	20.51	0.027						

Take home message

Thank you for your attentions!

Tzu-Pin Lu Institute of Health Data Analytics and Statistics, National Taiwan University tplu@ntu.edu.tw

_{衛生福利部國民健康署/臺灣大學公共衛生學院} 臺灣癌症登記中心 Taiwan Cancer Registry Center

台灣癌症準備暨資源分享協會