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https://biocorecrg.github.io/RNAseq_course_2019/alignment.html



https://www.nature.com/articles/nmeth.3317

•Nature Method Published: 09 March 2015
HISAT: a fast spliced aligner with low memory requirements



Fastq format
Short (and long) sequencing reads coming from the 
sequencers are stored in FASTQ format (files with an 
extension .fastq). This format contains the information 
about the sequence and the quality of each sequenced 
base. The quality encodes the probability that the 
corresponding base call is incorrect.

The FASTQ format contains four rows per sequencing 
read:
•a header containing @ as the first character
•the sequence content
•a spacer
•the quality encoded using ASCII characters.



Benefits and opportunities of RNA-seq

• Whole transcriptome sequencing 
• Annotation of new exons, transcribed regions, genes or non-coding RNAs 

• The ability to look at alternative splicing 

• Allele specific expression 

• RNA editing 

• Differential expression 



Fastqc
• Provide not only the problem from the sequencer, but the sample 

library

• Main functions
• Import of data from BAM, SAM or FastQ files (any variant)

• Providing a quick overview to tell you in which areas there may be problems

• Summary graphs and tables to quickly assess your data

• Export of results to an HTML based permanent report

• Offline operation to allow automated generation of reports without running 
the interactive application



Quality score

• Q = -10 x log10(P)

where P is the probability that a base call is erroneous

Phred Quality Score
Probability of incorrect 

base call
Base call accuracy

10 1 in 10 90%

20 1 in 100 99%

30 1 in 1000 99.9%

40 1 in 10,000 99.99%

We expected quality score is less than 20 



Fastqc example

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_seq
uence_short_fastqc.html

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/RNA-
Seq_fastqc.html

Bad trimmed adapter 

Expect

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/RNA-Seq_fastqc.html
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/RNA-Seq_fastqc.html
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/RNA-Seq_fastqc.html


1. Short Read Alignment
➢ STAR https://github.com/alexdobin/STAR/releases

➢ HISAT2 https://ccb.jhu.edu/software/hisat2/index.shtml

2.     Read counting
➢ HTseq http://www-huber.embl.de/HTSeq/doc/overview.html
➢ SAMtools http://www.htslib.org/

3.     Differential Expression
➢ DESeq https://bioconductor.org/packages/release/bioc/html/DESeq2.html

➢ DExSeq https://www.bioconductor.org/packages/release/bioc/html/DEXSeq.html

➢ edgeR https://bioconductor.org/packages/release/bioc/html/edgeR.html

➢ Voom http://web.mit.edu/~r/current/arch/i386_linux26/lib/R/library/limma/html/voom.html

4. Data Normalization
➢ SVASeq https://www.bioconductor.org/packages/release/bioc/html/sva.html

➢ Combat https://www.rdocumentation.org/packages/sva/versions/3.20.0/topics/ComBat

➢ PEER http://www.sanger.ac.uk/science/tools/peer

➢ SNM https://www.bioconductor.org/packages/release/bioc/html/snm.html

Another option is the Tuxedo protocol (Bowtie, Tophat, Cufflinks, Cuffdiff, 

https://ugene.net/wiki/display/WDD31/RNA-seq+Analysis+with+Tuxedo+Tools

RNAseq Software

https://github.com/alexdobin/STAR/releases
https://ccb.jhu.edu/software/hisat2/index.shtml
http://www-huber.embl.de/HTSeq/doc/overview.html
http://www-huber.embl.de/HTSeq/doc/overview.html
http://www-huber.embl.de/HTSeq/doc/overview.html
http://www.htslib.org/
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://www.bioconductor.org/packages/release/bioc/html/DEXSeq.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
http://web.mit.edu/~r/current/arch/i386_linux26/lib/R/library/limma/html/voom.html
https://www.bioconductor.org/packages/release/bioc/html/sva.html
https://www.rdocumentation.org/packages/sva/versions/3.20.0/topics/ComBat
http://www.sanger.ac.uk/science/tools/peer
https://www.bioconductor.org/packages/release/bioc/html/snm.html
https://ugene.net/wiki/display/WDD31/RNA-seq+Analysis+with+Tuxedo+Tools
https://ugene.net/wiki/display/WDD31/RNA-seq+Analysis+with+Tuxedo+Tools
https://ugene.net/wiki/display/WDD31/RNA-seq+Analysis+with+Tuxedo+Tools


Read Alignment



Often you will have a fixed budget that constrains how many arrays can be processed.  So your first task is to determine 
what levels of replication you can afford, and how they will impact statistical power.

Technical Replication:

- RNA preparation (eg. from adjacent biopsies)
- cDNA synthesis (pooling minimizes outlier effects)
- library preparation
- sequencing lane or array hybridization (usually a minimal effect)

Biological Replication:

Fixed effects: - sex
- treatment (drug, growth regimen, tissue)
- time of sampling (repeated measures in some cases)
- genotype (IF specifically chosen and resampled)

Random effects - individual from a population
- field plot

Basics of Experimental Design:  Levels of Replication



From reads to differential expression

Normalization

FPKM/Deseq/TMM
QC by 

RNA-SeQC

Transcript Abundance

FeatureCounts

DE testing

Biological Insights & hypothesis

List of  DE

GenomeAlignment
HISAT2/STAR/TOPHAT

SAM, BAM



Aim of normalization

• Normalization aims to ensure our expression estimates are:
• comparable across features (genes, isoforms, etc)

• comparable across libraries (different samples)

• on a human-friendly scale (interpretable magnitude)



The main factors considered during 
normalization 
• Sequencing depth

NOTE: In the figure above, each pink and green rectangle 
represents a read aligned to a gene. Reads connected by 
dashed lines connect a read spanning an intron.



• Gene length

• RNA composition



Normalization method
Normalization method Description Accounted factors Recommendations for use Between/ within

CPM (counts per million)
counts scaled by total 
number of reads

sequencing depth

gene count comparisons 
between replicates of the 
same samplegroup; NOT 
for within sample 
comparisons or DE 
analysis

TPM (transcripts per 
kilobase million)

counts per length of 
transcript (kb) per million 
reads mapped

sequencing depth and 
gene length

gene count comparisons 
within a sample or 
between samples of the 
same sample group; NOT 
for DE analysis

Within

RPKM/FPKM (reads/fragm
ents per kilobase of exon 
per million 
reads/fragments mapped)

similar to TPM
sequencing depth and 
gene length

gene count comparisons 
between genes within a 
sample; NOT for between 
sample comparisons or DE 
analysis

Within

DESeq2’s median of 
ratios [1]

counts divided by sample-
specific size factors 
determined by median 
ratio of gene counts 
relative to geometric 
mean per gene

sequencing depth and 
RNA composition

gene count comparisons 
between samples and 
for DE analysis; NOT for 
within sample 
comparisons

Between

EdgeR’s trimmed mean of 
M values (TMM) [2]

uses a weighted trimmed 
mean of the log expression 
ratios between samples

sequencing depth, RNA 
composition, and gene 
length

gene count comparisons 
between and within 
samples and for DE 
analysis

Between

https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-10-r106
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-3-r25


RPKM normalization 
(Reads Per Kilobase per Million)

• 𝑅𝑃𝐾𝑀 =
𝑟𝑔

𝑓𝑙𝑔×𝑅
× 109

rg :No. of gene reads

R  : Total number of reads

Flg : gene length



FPKM

• FPKM=
𝑓𝑔

𝑓𝑙𝑔×𝑅
× 109

fg :No. of gene fragments

flg : Length of gene

R: total reads counts



Example
Replicate 1 Replicate 2 Replicate 3

Gene A (2kb) 10,000,000 12,000,000 30,000,000

Gene B (4kb) 20,000,000 25,000,000 60,000,000

Gene C (1kb) 5,000,000 8,000,000 15,000,000

Gene D (10kb) 0 0 1,000,000

Sum 35,000,000 45,000,000 106,000,000

RPKM = 
total exone reads

𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠 ∗𝑒𝑥𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ (𝐾𝐵)
= 

10,000,000

10+20+5 ∗2
= 142857



RPKM/FPKM limitation
• Limitation

Using RPKM/FPKM normalization, the total number of RPKM/FPKM 
normalized counts for each sample will be different. Therefore, you 
cannot compare the normalized counts for each gene equally between 
samples

gene sampleA sampleB

XCR1 5.5 5.5

WASHC1 73.4 21.8

… … …

Total RPKM-
normalized 
counts

1,000,000 1,500,000

RPKM-normalized counts table



Between sample normalization

• To improvement the samples compare

• Methods 
• TMM (Trimmed mean of M-values)

• DeSeq



Trimmed Mean of M-values (TMM)
[Robinson and Oshlack, 2010], edgeR

Assumptions behind the method

the total read count strongly depends on a few highly expressed 

genes

most genes are not differentially expressed

⇒ remove extreme data for fold-changed (M) and average intensity (A)

gM (j, r) = log 2

Kgj

Dj
− log 2

Kgr

Dr
g

1

2
A (j, r) = log 2

gj

Dj
+ log 2

K Kgr

Dr

select as a reference sample, the 

sample r with the upper quartile 

closest to the average upper 

quartile

M- vs A-values −3

−2

−1

0

1

2

M
(j
,r
)

Trimmed
values

None

−20 −15 −10 −5

A(j,r)

Nathalie Villa-Vialaneix (INRA, MIAT) Biostatistics - RNAseq

17 / 37



Trim 30% on M-values



Robinson and Oshlack, 2010



Relative Log Expression (RLE) 
Deseq2

• RLE uses the median of ratios method

gene sampleA sampleB
pseudo-reference 

sample

EF2A 1489 906
sqrt(1489 * 906) 

= 1161.5

ABCD1 22 13
sqrt(22 * 13) 

= 17.7

… … … …

Step 1: creates a pseudo-reference sample (row-wise geometric mean)

For each gene, a pseudo-reference sample is created that is equal to the geometric 

mean across all samples.

Anders and Huber 2010



RLE

gene sampleA sampleB
pseudo-

reference 
sample

ratio of 
sampleA/ref

ratio of 
sampleB/ref

EF2A 1489 906 1161.5
1489/1161.5 

= 1.28
906/1161.5 

= 0.78

ABCD1 22 13 16.9 22/16.9 = 1.30 13/16.9 = 0.77

MEFV 793 410 570.2
793/570.2 

= 1.39
410/570.2 

= 0.72

BAG1 76 42 56.5 76/56.5 = 1.35 42/56.5 = 0.74

MOV10 521 1196 883.7
521/883.7 

= 0.590
1196/883.7 

= 1.35

… … … …

Step 2: calculates ratio of each sample to the reference

For every gene in a sample, the ratios (sample/ref) are calculated (as shown below). This is 

performed for each sample in the dataset. Since the majority of genes are not differentially 

expressed, the majority of genes in each sample should have similar ratios within the sample.



• Step 3: calculate the normalization factor for each sample (size 
factor)

The median value from all genes of all ratios for a given sample is taken 
as the normalization factor (size factor) for that sample, as calculated 
below. Notice that the differentially expressed genes should not affect 
the median value:

RLE



• Step 4: calculate the normalized count values using the normalization factor

gene sampleA sampleB

EF2A 1489 906

ABCD1 22 13

… … …

gene sampleA sampleB

EF2A 1489 / 1.3 = 1145.39 906 / 0.77 = 1176.62

ABCD1 22 / 1.3 = 16.92 13 / 0.77 = 16.88

… … …

For example, if the median ratio for SampleA was 1.3 and the median ratio for SampleB was 0.77, you 

could calculate normalized counts as follows:

SampleA median ratio = 1.3

SampleB median ratio = 0.77

Raw Counts

Normalized Counts



Dillies et al. 2012



Normalization result

Gaining comprehensive biological insight into the 
transcriptome by performing a broad-spectrum 
RNA-seq analysis. Nature Communications



From reads to differential expression

Normalization
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QC by 

RNA-SeQC
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Adopted from SoumyaLuthra’s presentation (“RNA-Seqanalysis in R(Bioconductor)”)

Differential Expression Analysis

How do the expression levels differ across several conditions?

Challenges:

1. Count data is discrete – no normal distribution. Cannot perform t-test.

2. Small number of replicates – cannot use permutation methods.

3. Account for variability in measurements across biological replicates of 
an experiment.



Poisson Distribution?
In probability theory and statistics, the Poisson distribution is adiscrete probability distribution that expresses the probability of agiven number 
of events occurring in a fixed interval of time or space if these events occur with a known constant rate and independently of the time since the 
last event. ThePoisson distribution can also be used for the number of events in other specified intervals such as distance, area or volume, e.g. 
the number of phone calls received by acall center per hour.

• Mean = Variance
❖ Mean is the average of the numbers

❖ Variance (σ2) in statistics is a measurement of the spread between numbers in a data set. That is, it measures how far each number in the
set is from the mean and therefore from every other number in the set.

• Is read count data Poisson Distributed?

• Over-dispersion - variance in RNA-Seq measurements of gene 
expression are larger than the theoretical values

❖ In statistics, overdispersion is the presence of greater variability in a data set 

than would be expected basedon a given statistical model.

Adopted from SoumyaLuthra’s presentation (“RNA-Seqanalysis in R(Bioconductor)”)



differential expression.

Adopted from SoumyaLuthra’s presentation (“RNA-Seqanalysis in R(Bioconductor)”)

Negative Binomial Distribution

• NBhas been shown to be a good fit to RNA-Seqdata

• It is flexible enough to account for biological variability

Model:

• Makes the assumption that an observation sayYgj(observed number) of reads for gene g sample j, has a mean μgj
and a variance of μgj +Φgμ2, whereΦg represents over-dispersion relative to poisson distribution.

• The mean parameter depends on the sequencing depth aswell ason the amount of RNAfrom gene in the
sample

• Obtaining good estimates of each gene’s dispersion is critical for statistical testing.

Tools:

• EdgeRand DESeqcount data using a Negative Binomial Distribution and perform statistical tests for

In probability theory and statistics, the negative binomial distribution is a discrete probability distribution of the number of successes in a 

sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of failures (denoted r) occurs. 
For example, if we define a 1 as failure, all non-1s as successes, and we throw a dice repeatedly until 1 appears the third time (r = three 
failures), then the probability distribution of the number of non-1s that appeared will be a negative binomial distribution.



of the variance of each measurement to be a function of its predicted value.)

Adopted from SoumyaLuthra’s presentation (“RNA-Seqanalysis in R(Bioconductor)”)

edgeR
EdgeR treats the Poissonvariance assimple sampling variance, and refers to the dispersion estimate as the "biological
coefficient of variation.”

Estimatingdispersion:
• EdgeRshares information across genesto determine acommon dispersion. It then calculates a dispersion

estimate per geneand shrinks it towards the common dispersion. Thegene-specific (referred to in edgeRas
tagwise) dispersion estimates are usedin the test for differential expression.

Statistical Test:
• Simpledesign - Fischer’sexact test
(statistical significance test that isone of aclassof exact tests, so called because the significance of the deviation from anull hypothesis (e.g., P-value)
canbe calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity, aswith many
statistical tests).

• Complexdesign - Generalized linear model (GLM)framework
(In statistics, the generalized linear model (GLM) is aflexible generalization of ordinary linear regression that allows
for response variables that have error distribution models other than a normal distribution. The GLMgeneralizes linear regression by allowing the
linear model to be related to the response variable via a link function and by allowing the magnitude



DESeq
• Differential gene expression from count data based on negative binomial distribution.

• Offers two transformations for stabilizing the variance of count data:

• VST–Variance stabilizing transformation

• Regularized log transformation (rlog)

http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

How do I use VST or rlog data for differential

testing?

The variance stabilizing and rlog transformations are
provided for applications other than differential testing,
for example clustering of samples or other machine

learning applications. For differential testing we
recommend the DESeq function applied to raw counts.

Adopted from SoumyaLuthra’s presentation (“RNA-Seqanalysis in R(Bioconductor)”)

http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html


DEmRNAexpression,p<0.05 (Top1000 mRNAs)mRNAs
adenine (3a) vs. control (1c)

Dendrogram at the side shows us a hierarchical clustering

for the genes.
Since the clustering is only relevant for genes that actually

carry signal, one usually carries it out only for a subset of

most highly variable genes (genes with the highest variance

across samples)

The heatmap becomes more interesting if we do not look

at absolute expression strength but rather at the amount

by which each gene deviates in a specific sample from the

gene’s average across all samples. Hence, we center and

scale each genes’ values across samples, and plot a

heatmap.

Heatmap is a graphical representation of data where

individual values contained in a matrix are represented as

colors. It allows to visualize expression of many genes in

many samples.

Blue–underexpressed genes

Red–overexpressed genes



Adding other parameters for theheatmaps….

SEX

CONDITION

regular gene names



mRNAs
Sample-To-Sample distance (Euclidian)

adenine (a) vs. control (c)

Goal:
to assessoverall similarity between samples

Aheatmap of this distance matrix gives us an
overview over similarities and dissimilarities

between samples.

We have to provide a hierarchical clustering (hc) to the heatmap

function based on the sample distances, or else the heatmap

function would calculate a clustering based on the distances

between the rows/columns of the distance matrix.



mRNAs
adenine (a) vs. control (c) PCAplot

Principal component plot 
of the samples

Related to the distance

matrix is the PCA plot,

which shows the samples

in the 2D plane spanned

by their first two principal
components. This type of

plot is useful for visualizing

the overall effect of

experimental covariates

and batch effects.



mRNAs Volcano plot - adenine (3a) vs. control (1c)



adenine (3a) vs. control (1c) vs.– first top 30 mRNAs

mRNAs

MAplot

► The function plotMA shows the log2 fold changes attributable 

to a given variable over the mean of normalized counts for all 

the samples in the DESeqDataSet.

► Points will be colored red if the adjusted p value is < 0.1.

Exporting results to CSV files

The Wald statistic is the logfoldchange (LFC) divided by its standard error (lfcSE) . This Wald statistic is used

to calculate p-values (it is compared to a standard normal distribution) . So it's the ratio of LFC and SE which

determines significance.

The Benjamini-Hochberg (BH) procedure is a powerful tool that decreases the false discovery rate. 

Adjusting the rate helps to control for the fact that sometimes small p-values (less than 5%) happen by 

chance, which could lead you to incorrectly reject the true null hypotheses. In other words, the BH Procedure 

helps you to avoid Type I errors (false positives).

sortedby padj
(from the smallest to the largest & expandselection)



Interpreting gene lists

• Genome-ScaleAnalysis (Omics)

• Genomics, Proteomics

• Tellme what's interesting about these genes

?

Sample to Insight

44

Ranking or
clustering

4/20/2024



Interpreting gene lists

4Sample to Insight

45

Ranking or
clustering

Eureka! New 

heart disease 
gene!Prior knowledge about 

cellular processes

Analysis
tools

• Genome-ScaleAnalysis (Omics)

• Genomics, Proteomics

• Tellme what's interesting about these genes

• Are they enriched in known pathways, complexes, functions

4/20/2024



Pathway and network analysis
• Save time compared to traditional approach

my favorite gene

Sample to Insight

46

4/20/2024



Pathway and network analysis

47

• Helps gain mechanistic insight into ‘omics data

• Identifying a master regulator, drug targets, characterizing pathways active in a
sample

• Any type of analysis that involves pathway or network information

• Most commonly applied to help interpret lists of genes

• Most popular type is pathway enrichment analysis, but many others are
useful



•Khatri et. Al,2012 Plos computational biology

• The data generatedby an experiment using a high-throughput technology (e.g.,microarray,proteomics, metabolomics), 
along with functional annotations(pathwaydatabase) of the correspondinggenome, are input to virtually all pathway 
analysis methods.

• ORAmethods require that the input is a list of differentially expressedgenes

• FCSmethodsuse the entire data matrix asinput

• PT-basedmethods additionally utilize the number and type of interactionsbetween gene products, which may or may not be a 
part of apathwaydatabase.

• The result of every pathwayanalysismethod is a list of significantpathwaysin the condition under study.
Sample to Insight 48



Over-Representation Analysis (ORA) Approaches

Sample to Insight

49

• Earliestmethods➔over-representation analysis(ORA)

• Statistically evaluates the fraction of genesin a particular pathway found
among the set of genesshowingchangesin expression

• “2×2 tablemethods”



Over-representation Analysis (ORA)

50



Functional Class Scoring
Example --- GSEA

Sample to Insight

51

1. Identified differential expression gene

2. gene-level statics combined to pathway-level statistics，
statistics methods Kolmogorov-Smirnov statistic, sum, 
mean, median of gene-level statistics。

3. Testpathway-level statistics



Functional Class Scoring

52

4/20/2024



Pathway Topology (PT)-Based Approaches

Sample to Insight

53

• Alarge number of publicly available pathwayknowledge bases 
provide information beyond simple lists of genes for each pathway
– KEGG

– MetaCyc

– Reactome

– RegulonDB

– STKE

– BioCarta

– PantherDB

– ….

• Theseknowledge bases also provide information about gene 
products that interact with each other in a given pathway,how they 
interact (e.g., activation, inhibition, etc.), and where they interact 
(e.g., cytoplasm, nucleus, etc.)



Topology method
4/20/2024

Topology designs for pathway deregulation. a Example of a particular pathway with 30 genes. In order 
to deregulate this pathway on detection call level e.g. DC = 50 % (+/− 5 %) we needed to assign 14–16 
affected gene to this pathway and allocate them on the pathway graph according to 3 topology 
approaches. b In the community design two gene communities were selected to be affected (depicted
in red). c Top scored betweenness genes were depicted in red. d Gene neighbourhood of order 2 of the 
blue gene was affected (in red). The colour coding of graph edges represents activation (green) and

54

inhibition (red) interactions between the nodes Bayerlová, M., Jung, K., Kramer, F. et al.BMC Bioinformatics12(335) 2015

https://bmcbioinformatics.biomedcentral.com/
https://bmcbioinformatics.biomedcentral.com/


Pathway Topology

Sample to Insight 55

4/20/2024



Benefits of pathway analysis

• Easier to interpret
• Familiar concepts e.g. cell cycle

• Identifies possible causal mechanisms

• Predicts new roles for genes

• Improves statistical power
• Fewer tests, aggregates data from multiple genes into

one pathway

• More reproducible
• E.g. gene expression signatures

• Facilitates integration of multiple data types

Sample to Insight

2160



combine all of them

4/20/2024

Sample to Insight 57
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