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Table 1 | Sensitivity and precision of leading spliced aligners

No. of splice sites No. of true splice Sensitivity Precision

Program reported sites reported (%) (%)
HISATx1 91,904 85,546 97.3 93.1
HISATx2 90,331 85,603 97.3 94.8
HISAT 90,300 85,587 97.3 94.8
STAR 95,892 84,678 96.3 88.3
STARx2 92,254 84,734 96.3 91.8
GSNAP 92,547 85,598 97.3 92.5
OLego 86,779 82,879 94.2 95.5
TopHat2 96,474 79,705 90.6 82.6

Sensitivity and precision of leading spliced aligners for 87,944 true splice sites contained in
20 million simulated reads from the human genome, with a mismatch rate of 0.5%. Sensitiv-
ity is the percentage of true splice sites found out of the total that were present. Precision

(or positive predictive value) is the percentage of reported splice sites that are correct.

*Nature Method Published: 09 March 2015

HISAT: a fast spliced aligner with low memory requirements

https://www.nature.com/articles/nmeth.3317
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Figure 3 | Alignment accuracy of spliced alignment software for 20 million
simulated 100-bp reads. Alignment results for all read types (defined in
Fig. 1) on simulated data containing errors. Reads are categorized as
indicated by the colors. For multimapped reads, an aligner was credited
with a correct alignment if it mapped a read to multiple locations and
one of those locations was correct. Note that the set of multimapped
reads reported by the various aligners may be different, depending on
each program’s alignment policy and default behavior. The upper numbers
are the percentages corresponding to correctly and uniquely mapped
reads. The numbers inside parentheses show percentages for cases
correctly and uniquely mapped and correctly multimapped combined.

In Supplementary Table 2, we provide detailed percentages on all four
categories for each aligner.

Percentage of reads




Fastg format

Short (and long) sequencing reads coming from the
sequencers are stored in FASTQ format (files with an
extension .fastq). This format contains the information
about the sequence and the quality of each sequenced

base. The quality encodes the probability that the @HWI-ST227:389: C4WA2ACXX:7:1204:2272:59979
Corresponding base Ca” iS inCO[TeCt. (+-}GAGGAAGGTCCTCGCTCCTCTTTCATATAAGGGAAATGGCTGAAT

FFFFHHHHHHJIJJJJJJJJIJIIIGIGIGGIJIIJIJIJIIIIII

Header  Sequence Quality

The FASTQ format contains four rows per sequencing
read:

*a header containing @ as the first character

the sequence content

*a spacer

the quality encoded using ASCII characters.



Benefits and opportunities of RNA-seq

* Whole transcriptome sequencing
* Annotation of new exons, transcribed regions, genes or non-coding RNAs
* The ability to look at alternative splicing
* Allele specific expression
* RNA editing
 Differential expression



Fastgc

* Provide not only the problem from the sequencer, but the sample
library

* Main functions
* Import of data from BAM, SAM or FastQ files (any variant)
* Providing a quick overview to tell you in which areas there may be problems
 Summary graphs and tables to quickly assess your data

Export of results to an HTML based permanent report

Offline operation to allow automated generation of reports without running
the interactive application



Quality score

e Q=-10 xlog10(P)
where P is the probability that a base call is erroneous

Phred Quality Score

10
20
30
40

Probability of incorrect
base call

1in 10
1in 100
1in 1000

1in 10,000

We expected quality score is less than 20

Base call accuracy

90%
99%
99.9%
99.99%



Fastgc example

Expect

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good seq
uence_short_fastgc.html

Bad trimmed adapter
https://www.bioinformatics.babraham.ac.uk/projects/fastgc/RNA -

Seq_fastgc.html



https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/RNA-Seq_fastqc.html
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/RNA-Seq_fastqc.html
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/RNA-Seq_fastqc.html

RNAseq Software

Short Read Alignment
> STAR https://github.com/alexdobin/STAR /releases
> HISAT?2 https://ccb.jhu.edu/software/hisat2/index.shtml

Read counting

»  HTseq http://www-huber.embl.de/HTSeq/doc/overview.html
> SAMtools  http://www.htslib.org/

Differential Expression

DESeq https://bioconductor.org/packages/release/bioc/html/DESeq2.html

DExSeq  https://www.bioconductor.org/packages/release/bioc/html/DEXSeq.html

edgeR https://bioconductor.org/packages/release/bioc/html/edgeR.html

Voom http://web.mit.edu/~r/current/arch/i386_linux26/lib/R/library/limma/html/voom.html

Y VV VY

Data Normalization

» SVASeq  https://www.bioconductor.org/packages/release/bioc/html/sva.html

» Combat  https://www.rdocumentation.org/packages/sva/versions/3.20.0/topics/ComBat
» PEER http://www.sanger.ac.uk/science/tools/peer

> SNM https://www.bioconductor.org/packages/release/bioc/html/snm.html

Another option is the Tuxedo protocol (Bowtie, Tophat, Cufflinks, Cuffdiff,
https://ugene.net/wiki/display/\WDD31/RNA-seg+Analysis+with+Tuxedo+Tools



https://github.com/alexdobin/STAR/releases
https://ccb.jhu.edu/software/hisat2/index.shtml
http://www-huber.embl.de/HTSeq/doc/overview.html
http://www-huber.embl.de/HTSeq/doc/overview.html
http://www-huber.embl.de/HTSeq/doc/overview.html
http://www.htslib.org/
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://www.bioconductor.org/packages/release/bioc/html/DEXSeq.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
http://web.mit.edu/~r/current/arch/i386_linux26/lib/R/library/limma/html/voom.html
https://www.bioconductor.org/packages/release/bioc/html/sva.html
https://www.rdocumentation.org/packages/sva/versions/3.20.0/topics/ComBat
http://www.sanger.ac.uk/science/tools/peer
https://www.bioconductor.org/packages/release/bioc/html/snm.html
https://ugene.net/wiki/display/WDD31/RNA-seq+Analysis+with+Tuxedo+Tools
https://ugene.net/wiki/display/WDD31/RNA-seq+Analysis+with+Tuxedo+Tools
https://ugene.net/wiki/display/WDD31/RNA-seq+Analysis+with+Tuxedo+Tools

Read Alignment
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Basics of Experimental Design: Levels of Replication

Often you will have a fixed budget that constrains how many arrays can be processed. So your first task is to determine
what levels of replication you can afford, and how they will impact statistical power.

Technical Replication:

- RNA preparation (eg. from adjacent biopsies)

- cDNA synthesis (pooling minimizes outlier effects)

- library preparation

- sequencing lane or array hybridization (usually a minimal effect)

Biological Replication:

Fixed effects: - sex

treatment (drug, growth regimen, tissue)

time of sampling (repeated measures in some cases)
genotype (IF specifically chosen and resampled)

individual from a population
field plot

Random effects



From reads to differential expressmn
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Aim of normalization

 Normalization aims to ensure our expression estimates are:
e comparable across features (genes, isoforms, etc)
e comparable across libraries (different samples)
* on a human-friendly scale (interpretable magnitude)



The main factors considered during

normalization

* Sequencing depth Sample A Reads
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* Gene length

 RNA composition
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Normalization method

Normalization method Description Accounted factors Recommendations for use Between/ within

gene count comparisons

between replicates of the

same samplegroup; NOT

for within sample

comparisons or DE

analysis

gene count comparisons

within a sample or

between samples of the ~ Within
same sample group; NOT
for DE analysis

gene count comparisons
between genes within a
sample; NOT for between
sample comparisons or DE
analysis

counts scaled by total

number of reads sequencing depth

CPM (counts per million)

counts per length of
transcript (kb) per million
reads mapped

TPM (transcripts per
kilobase million)

sequencing depth and
gene length

RPKM/FPKM (reads/fragm

ents p.er kilobase of exon similar to TPM sequencing depth and
per million gene length
reads/fragments mapped)

Within

counts divided by sample-
specific size factors
DESeq2’s median of determined by median sequencing depth and
ratios [1] ratio of gene counts RNA composition
relative to geometric
mean per gene

gene count comparisons

between samples and

for DE analysis; NOT for Between
within sample

comparisons

. . . ene count comparisons
uses a weighted trimmed sequencing depth, RNA & ‘p :
between and within

mean of the log expression composition, and gene Between

. samples and for DE
ratios between samples length P ]
analysis

EdgeR’s trimmed mean of
M values (TMM) [2]


https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-10-r106
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-3-r25

RPKM normalization
(Reads Per Kilobase per Million)

e RPKM = —9— % 10°

flgXR

r, :No. of gene reads
R : Total number of reads
Flg : gene length



FPKM

. FPKM= —Lo— x 10°
flgXR
f, :No. of gene fragments
flg : Length of gene

R: total reads counts



Example

Replicate 1 Replicate 2 Replicate 3
Gene A (2kb) 10,000,000 12,000,000 30,000,000
Gene B (4kb) 20,000,000 25,000,000 60,000,000
Gene C (1kb) 5,000,000 8,000,000 15,000,000
Gene D (10kb) 0 0 1,000,000
Sum 35,000,000 45,000,000 106,000,000

total exone reads 10,000,000
RPKM = = = 142857

mapped reads (millions)~exon length (KB) ~ (10+20+5)%2




RPKM/FPKM limitation

* Limitation

Using RPKM/FPKM normalization, the total number of RPKM/FPKM
normalized counts for each sample will be different. Therefore, you
cannot compare the normalized counts for each gene equally between
samples

RPKM-normalized counts table

gene sampleA sampleB
XCR1 5.5 5.5
WASHC1 73.4 21.8
Total RPKM-

normalized 1,000,000 1,500,000
counts



Between sample normalization

* To improvement the samples compare

e Methods

e TMM (Trimmed mean of M-values)
* DeSeq



Trimmed Mean of M-values (TMM)

[Robinson and Oshlack, 2010], edgeR
Assumptions behind the method

@ the total read count strongly depends on a few highly expressed
genes

@ most genes are not differentially expressed

= remove extreme data for fold-changed (M) and average intensity (A)

el g Kor 1 Kg Kgr
My(/,r) = lo - lo AqJl/,r) = ~ lo + lo
gl r) P D 92 gl r) 5 992 D; 92 p

select as a reference sample, the
sample r with the upper quartile
closest to the average upper
quartile

M- vs A-values

17137




Trimmed Mean of M-values (TMM)

[Robinson and Oshlack, 2010], edgeR
Assumptions behind the method

@ the total read count strongly depends on a few highly expressed
genes

@ most genes are not differentially expressed

= remove extreme data for fold-changed (M) and average intensity (A)

- Ko K o Ky K,
Mol = g ) -lome () A= 5o (Fgf!)“ogz(ﬁg:)]

D Dr

Trim 30% on M-values

Mi.r)

Trim 5% on A-values

A1)



On remaining data, calculate the
weighted mean of M-values:

. T wglj.r)Mg(j.
* 5% of Ag . g:no rmme

TMM(J,r) = .
( ) Z Wg(j& r)

g:not trimmed

-0 D;—K Dr—Kygr
Wlth Wg(jﬁ ) ( Dng?j _I_ DrKgr )

A1)

Robinson and Oshlack, 2010

calcNormFactors (..., method="TMM")



Relative Log Expression (RLE)
Deseq’Z

e RLE uses the median of ratios method

Step 1: creates a pseudo-reference sample (row-wise geometric mean)
For each gene, a pseudo-reference sample is created that is equal to the geometric
mean across all samples.

pseudo-reference

leA B
gene sample sample sample
sqrt(1489 * 906)
EF2A 1489 906 - 11615
sqrt(22 * 13)
ABCD1 22 13 =177

Anders and Huber 2010



RLE

Step 2: calculates ratio of each sample to the reference

For every gene in a sample, the ratios (sample/ref) are calculated (as shown below). This is
performed for each sample in the dataset. Since the majority of genes are not differentially
expressed, the majority of genes in each sample should have similar ratios within the sample.

gene

EF2A

ABCD1

MEFV

BAG1

MOV10

sampleA

1489

22

793

76

521

sampleB

906

13

410

42

1196

pseudo-
reference
sample

1161.5

16.9

570.2

56.5

883.7

ratio of
sampleA/ref

1489/1161.5
=1.28

22/16.9=1.30

793/570.2
=1.39

76/56.5 =1.35

521/883.7
=0.590

ratio of
sampleB/ref

906/1161.5
=0.78

13/16.9=0.77

410/570.2
=0.72

42/56.5=0.74

1196/883.7
=1.35



RLE

e Step 3: calculate the normalization factor for each sample (size
factor)

The median value from all genes of all ratios for a given sample is taken
as the normalization factor (size factor) for that sample, as calculated

below. Notice that the differentially expressed genes should not affect
the median value:

sample 1 / pseudo-reference sample

_ I.IIIII|| ||‘IIIIII-I--I_-I o
[ 1 T
0 1 2 3

2500

1500

0 500

4



* Step 4: calculate the normalized count values using the normalization factor

For example, if the median ratio for SampleA was 1.3 and the median ratio for SampleB was 0.77, you

could calculate normalized counts as follows:
SampleA median ratio = 1.3
SampleB median ratio = 0.77

Raw Counts gene
EF2A

ABCD1

gene

Normalized Counts EF2A
ABCD1

sampleA
1489
22

sampleA
1489 /1.3 =1145.39
22 /1.3=16.92

sampleB
906
13

sampleB
906 / 0.77 = 1176.62
13 /0.77 = 16.88
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Comparison of normalization methods for real data. (A) Boxplots of log2(counts + 1) for all conditions

Figure I:

and replicates in the M. musculus data, by normalization method. (B) Boxplots of intra-group variance for one of
the conditions (labeled ‘B’ in the corresponding data found in Supplementary Data) in the M. musculus data, by nor-
malization method. (C) Analysis of housekeeping genes for the H. sapiens data. (D) Consensus dendrogram of differ-

ential analysis results, using the DESeq Bioconductor package, for all normalization methods across the four

datasets under consideration.

Dillies et al. 2012



Normalization result

Method Distribution Intra-Variance Housekeeping Clustering False-positive rate
TC — + + — —

uQ ++ ++ + ++ —

Med ++ ++ — ++ —

DESeq ++ ++ ++ ++ ++

TMM ++ ++ ++ ++ ++

Q ++ — + ++ —

RPKM — + + — —

A‘—"indicates that the method provided unsatisfactory results for the given criterion, while a‘+’and ‘4++’ indicate satisfactory and very satisfac-

tory results for the given criterion.

Gaining comprehensive biological insight into the
transcriptome by performing a broad-spectrum
RNA-seq analysis. Nature Communications
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Differential Expression Analysis

How do the expression levels differ across several conditions?

Challenges:
1. Count data is discrete — no normal distribution. Cannot perform t-test.
2. Small number of replicates — cannot use permutation methods.

3. Account for variability in measurements across biological replicates of
an experiment.

Adopted from Soumya Luthra’s presentation (‘RNA-Seq analysis in R(Bioconductor)”)



Poisson Distribution?

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number

of events occurring in a fixed interval of time or space if these events occur with a known constant rate and independently of the time since the
last event. The Poisson distribution can also be used for the number of events in other specified intervals such as distance, area or volume, e.g.
the number of phone calls received by a call center per hour.

* Mean = Variance

%+ Mean is the average of the numbers

++ Variance (02?) in statistics is a measurement of the spread between numbers in a data set. That is, it measures how far each number in the
set is from the mean and therefore from every other number in the set.

* |s read count data Poisson Distributed?

» Over<dispersion - variance in RNA-Seq measurements of gene
expression are larger than the theoretical values
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% In statistics, overdispersion is the presence of greater variability in a data set
than would be expected based on a given statistical model.
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Adopted from Soumya Luthra’s presentation (‘RNA-Seq analysis in R(Bioconductor)’)



Negative Binomial Distribution

In probability theory and statistics, the negative binomial distribution is a discrete probability distribution of the number of successes in a
sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of failures (denoted r) occurs.
For example, if we define a 1 as failure, all non-1s as successes, and we throw a dice repeatedly until 1 appears the third time (r = three
failures), then the probability distribution of the number of non-1s that appeared will be a negative binomial distribution.

* NB has been shown to be a good fit to RNA-Seg data
* |t is flexible enough to account for biological variability

Model:

« Makes the assumption that an observation say Yj(observed numben) Of reads for gene g sample j, has a mean pg;
and a variance of g + @g 2, where Oy represents over-dispersion relative to poisson distribution.

* The mlean parameter depends on the sequencing depth as well as on the amount of RNAfrom gene in the
sample

 Obtaining good estimates of each gene’s dispersion is critical for statistical testing.

Tools:

. E_r%?eR and DESeq count data using a Negative Binomial Distribution and perform statistical tests for
differential expression.

Adopted from Soumya Luthra’s presentation (‘RNA-Seq analysis in R(Bioconductor)”)



edgeR

FoeeR treats the Poisson variance as simple sampling variance, and refers to the dispersion estimate as the "biological
coefficient of variation.”

Estimating dispersion:
e EdgeR shares information across genes to determine acommon dispersion. It then calculates a dispersion

estimate per gene and shrinks it towards the common dispersion. The gene-specific (referred to in edgeR as
tagwise) dispersion estimates are used in the test for differential expression.

Statistical Test:
* Simple design - Fischer’s exact test

(statistical significance test that is one of a dass of exact tests, so called because the significance of the deviation from anull hypothesis (e.g., Pvalue)
can be calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity, as with many
statistical tests).

» Complex design - Generalized linear model (GLM) framework

(In statistics, the generalized linear model (GLM) is a flexible generalization of ordinary linear regression that allows
for response variables that have error distribution models other than a normal distribution. The GLM generalizes linear regression by allowing the
linear model to be related to the response variable via a link function and by allowing the magnitude

of the variance of each measurement to be a function of its predicted value.)

Adopted from Soumya Luthra’s presentation (‘RNA-Seq analysis in R(Bioconductor)”)



DESeq

« Differential gene expression from count data based on negative binomial distribution.

« Offers two transformations for stabilizing the variance of count data:

VST — Variance stabilizing transformation
 Regularized log transformation (rlog)

http://bioconductor.org/packages/devel/bioc/vignettes/DE Seg2/inst/doc/DESeg2.htmil

Variance stabilizing transformation

Above, we used a parametric fit for the dispersion. In this case, the closed-form expression for the variance stabilizing transformation is used by
the vst function. If a local fit is used (option fitType="locfit" to estimateDispersions)a numerical integration is used instead. The transforme«
data should be approximated variance stabilized and also includes correction for size factors or normalization factors. The transformed data is o
the log2 scale for large counts.

Regularized log transformation

The function rlog, stands for regularized log, transforming the original count data to the log2 scale by fitting a model with a term for each sample
and a prior distribution on the coefficients which is estimated from the data. This is the same kind of shrinkage (sometimes referred to as
regularization, or moderation) of log fold changes used by the DESeq and nbinomWaldTest. The resulting data contains elements defined as:

log, (gi)) = P + Pij

where g;; is a parameter proportional to the expected true concentration of fragments for gene / and sample j (see formula below), Piois an
intercept which does not undergo shrinkage, and /},,- is the sample-specific effect which is shrunk toward zero based on the dispersion-mean
trend over the entire dataset. The trend typically captures high dispersions for low counts, and therefore these genes exhibit higher shrinkage
from the rlog.

Note that, as g;; represents the part of the mean value p;; after the size factor §; has been divided out, it is clear that the rlog transformation
inherently accounts for differences in sequencing depth. Without priors, this design matrix would lead to a non-unique solution, however the
addition of a prior on non-intercept betas allows for a unique solution to be found.

Adopted from Soumya Luthra’s presentation (‘RNA-Seq analysis in R(Bioconductor)’)

How do | use VST or rlog data for differential
testing?

The variance stabilizing and rlog transformations are
provided for applications other than differential testing,
for example clustering of samples or other machine
learning applications. For differential testing we
recommend the DESeq function applied to raw counts.


http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

mRNAS DE mRNA expression, p <0.05 (Top 1000 mRNAs)

Blue — underexpressed genes

Red — overexpressed genes
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Dendrogram at the side shows us a hierarchical clustering
for the genes.

Since the clustering is only relevant for genes that actually
carry signal, one usually carries it out only for a subset of
most highly variable genes (genes with the highest variance
across samples)

The heatmap becomes more interesting if we do not look
at absolute expression strength but rather at the amount
by which each gene deviates in a specific sample from the
gene’s average across all samples. Hence, we center and
scale each genes values across samples, and plot a
heatmap.

Heatmap is a graphical representation of data where
individual values contained in a matrix are represented as
colors. It allows to visualize expression of many genes in
many samples.
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Adding other parameters for the heatmaps....
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MRNAs

Sample-To-Sample distance (Euclidian)

adenine (a) vs. control (c)

Goal:
to assess overall similarity between samples

A heatmap of this distance matrix gives us an
overview over similarities and dissimilarities
between samples.

We have to provide a hierarchical clustering (hc) to the heatmap
function based on the sample distances, or else the heatmap
function would calculate a clustering based on the distances
between the rows/columns of the distance matrix.




MRNAs

adenine (a) vs. control (c)

Principal component plot
of the samples

Related to the distance
matrix is the PCA plot,
which shows the samples
in the 2D plane spanned
by their first two principal
components. This type of
plot is useful for visualizing
the overall effect of
experimental covariates
and batch effects.
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PCADplot

PC1: 88'5:"':‘ variance

group

a

C



MRNAs

Volcano plot - adenine (3a) vs. control (1¢)
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MRNAs

adenine (3a) vs. control (1c) vs. —first top 30 mMRNAs
sorted by padij

Exporting results to CSV files (from the smallest to the largest & expand selection)

[ No.]Gene name Ensemble ID baseMean log2FoldChange IfcSE stat pvalue padj I
1 Collal ENSMUSGO0000001506  3568.664273 4173044024 0.1119629 37.271677 4.72E-304 | 9.53E-300
2 Col3al ENSMUSG00000026043  3981.115995 4096625696 0.1180196 34.711412 5.30E-264 | 5.356-260 DESeq2: DE pAdjValue < 0.005
3 Colla2 ENSMUSGO0000029661 3278.481421 3046653811 00949071 3210144 4.21E-226 | 2.836-222
4 a ENSMUSGO0000024164  6370.458168 4965836181 01731614 28.677494 7.286-181 | 3.67E-177 2
5 Adamts2  ENSMUSGO0000036545  282.842667 3174079506 0.1229816 25.809376 6.96E-147 | 2.81E-143 MA plot
6 ly2 ENSMUSG00000069516  3832.940699 4607881751 01833924 2512581 2.60E-139 | 8.74E-136
7 Qss ENSMUSG00000038642  1942.984658 3945495455 0.1634801 24.134411 109E-128 | 3.14E-125 o .
8 Lthp2 ENSMUSG00000002020 555.4845735 6.817605323 0.2875797 23.706838 3.07E-124 || 7.73E-121 5
9 Mmpld  ENSMUSG00000000957 802.6007325 3190026073 0.1350697 23.617637 2.54E-123 | 5.69E-120 .
10 Ccde80  ENSMUSGO0000022665  526.500283 330840364 01428569 23.158869 1.18E-118 [ 2.39-115 £
1 Thyl ENSMUSG00000032011 302.3139572 4378722698 0.1929659 22.691688 5.41E-114 [ 9.93E-111 5 o
12 Fbliml  ENSMUSGO0000006219 422.8370972 2525093978 0.1134461 22.258099 9.42E-110 | 1.586-106 3;
13 Cdds ENSMUSGO0000005087  499.6884963 4419823127 0.1989163 22.219515 2.22E-109 | 3.45E-106 2
14 Clga ENSMUSG00000036887  1190.967138 3485798461 0.1607421 21.685666 2.80E-104 | 4.04E-101
15 Cab ENSMUSG00000073418  322.2700895 4342341384 0.2003426 21.674584 3.56E-104 | 4.80E-101 7
16 Mmp2 ENSMUSG00000031740 323.8005229 3448601945 01592072 21.661095 4.78E-104 | 6.03€-101
17 Bgn ENSMUSG00000031375  6234.405188 2043288181 0.0949252 21.525254 9,036-103 | 1.07E-99
18 Clgb ENSMUSG00000036905  1102.615883 3343560524 0.1568949 21310826 9.01€-101 | 1.01E-97 o o e i
19 Ad ENSMUSG00000002602  1174.057444 197962705 0.0941189 21.033254 3.266-98 | 3.46E-95 ' ‘ - :
20 Siglecl  ENSMUSGO0000027322 211.5220632 4178186433 0.1993228 20.961913 1.466-97 | 147E-94 ' 100 10000
21 Veaml  ENSMUSGO0000027962 1477.894386 3945857289 0.1889041 20.888147 6.86E-97 | 6.60E-94 e e
2 Clge ENSMUSGO0000036896  1026.016346 3511749191 0.1699725 20660692 7.82E-95 | 7.18£-92
23 Aocl ENSMUSGO0000029811  746.4090098 4815845493 0.2350584 20.487864 2.766-93 | 2.42E-90 . .
24 Mpegl ENSMUSGO0000046805  1715.418785 2992047135 0.1469941 20.354874  4.20-92 | 3.53E-89 > The function plotMA shows the log2 fold changes attributable
25 Laptm5 ENSMUSG00000028581 975.9864598 2963124346 0.1469332 20.166479  1.93E-90 | 1.56E-87 toa given Variable over the mean Of norma”zed counts for a”
26 Runxl ENSMUSG00000022952  208.4711273 3750183207 0.1861044 20.15096  2.64E-90 | 2.05E-87 .
27 Tnfrsflb  ENSMUSGO0000028599 359.1322718 2972165405 0.1476976 20.123313  4.61€-90 | 3.45€-87 the samples in the DESeqDataSet.
28 Sh3pxd2b  ENSMUSGO0000040711 345.0522222 2342656605 0.117242 19.981376 8.00E-89 | 5.76E-86 . - . . .
29 Sparc ENSMUSG00000018593  3983.544768 2161385143 0.1085952 19.903143 3.826-88 | 2.66E-85 > Points will be colored red if the adjusted p value is < 0.1.
0 cdé ENSMUSGO0000018927  287.4907186 4074499712 02049543 19.880041 6.06E-88 | 4.08E-85

* baseMean: mean of normalized counts for all samples

* log2FoldChange : log2 fold change

* 1fcSE: standard error

* stat:Wald statistic

e pvalue: Wald test p-value The Benjamini-Hochberg (BH) procedure is a powerful tool that decreases the false discovery rate.

* padj: BH adjusted p-values m—sssssssm) Adjusting the rate helps to control for the fact that sometimes small_p-values (less than 5%) happen by
chance, which could lead you to incorrectly reject the true null hypotheses. In other words, the BH Procedure
helps you to avoid Type | errors (false positives).

The Wald statistic is the logfoldchange (LFC) divided by its standard error (IfcSE) . This Wald statistic is used
to calculate p-values (it is compared to a standard normal distribution) . So it's the ratio of LFC and SE which
determines significance.
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Interpreting gene lists

» (Genome-Scale Analysis (Omics)
«  Genomics, Proteomics

Tellme what's interesting about these genes

GNAQ

Ranking or CiAS

DGKZ
clustering SucyiAs
PDE4D
ATP2AZ
ATPZA3
NOS51
CHN1
GSTOM
NOS3

CNN2
MYLK2
CALD1
ACTA1

MYL2

Sample to Insight
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Interpreting gene lists
» (Genome-Scale Analysis (Omics)
«  Genomics, Proteomics

Tellme what's interesting about these genes

Are they enriched in known pathways, complexes, functions

GNAQ

Ranking or | ows

DGKZ
clustering  [cicras
PDEAD
ATP2A2
ATP2A3
NOS1

CNN1

GSTOM
NOS53 ® Payottphase
CNN2 e
MYLK2
CALD1
ACTA1
MYL2

Analysis

Eureka! New
heart disease
gene!

Prior knowledge about
cellular processes

Sample to Insight
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Sample to Insight

Pathway

GNAQ

GNAS

DGKZ

GUCY1A3

PDE4B

PDEAD

ATP2A2

CHNN1

GSTOM

NOS3

CHNN2

MYLK2

CALD1

ACTA1

MYL2

g

N

my favorite gene

/]

Pubmed.gov ,

US N i Library of
National Institutes of Health

Show additional filters

Article types
Review

More ...

Text availability
Abstract available
Free full text available
Full text available

Publication
dates

5 years

S%\gdlmr; gc;[ rxga?erdkco trad ml%gll g pproach

:j NCBI Resources (v) How To (v

| PubMed 54 ( GNAQ ‘
[ JRSS Save search Advanced

Display Settings: (] Summary, 20 per page, Sorted by Recently A‘
See 225 articles about GNAQ gene function
See also: GNAQ guanine nucleotide binding protein (G protein). ¢
gnagq in Homo sapiens | Mus musculus | Rattus norvegicus | All

Results: 1 to 20 of 114

(J Sturge-Weber Syndrome and Port-Wine Stains Caused b
1. Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP,‘
AM, Pevsner J.
N Ennl | Mad 20413 May 8. [Epub ahead of print]
“aMed - as supplied by publisher]
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Pathway and network analysis

* Helps gain mechanistic insight into ‘omics data

|dentifying a master regulator, drug targets, characterizing pathways active in a
sample

* Any type of analysis that involves pathway or network information
* Most commonly applied to help interpret lists of genes

* Most popular type is pathway enrichment analysis, but many others are
useful



Functional Pathway Analysis
Over-Representation Analysis (ORA)

Differential Differentially Number of DE and
Expression j==p=IExpressed (DE)=3pIReference Genes in
Analysis Genes Each Pathwa

Functional Class Scoring (FCS)

Gene-level Gene-set (Pathway) —— Assess Pathway
Statistics » Statistics Significance

Pathway Pathway Topology (PT)

Database
DE Genes or Gene-level Statisticsf=————=31pathway
N—
Impact
Pathway Topology > Factor

* Number of Reactions
* Position of Gene
* Type of Reaction

-Khatri et. Al,2012 Plos computational biology

« The data generated by an experiment using a high-throughput technology (e.g., microarray, proteomics, metabolomics),
along with functional annotations (pathway database) of the corresponding genome, are input to virtually all pathway
analysis methods.

«  ORAmethods require that the input is a list of differentially expressed genes
+  HCSmethods use the entire data matrix asinput

»  PTbased methods additionally utilize the number and type of interactions between gene products, which may or may not be a
part of a pathway database.

» Theresult of every pathway analysis method is a list of significant pathwaysin the condition under study.
Sample to Insight 48



Over-Representation Analysis (ORA) Approaches

* Earliest methods =2 over-representation analysis (ORA)

* Statistically evaluates the fraction of genesin a particular pathway found
among the set of genesshowing changesin expression

e “2x2table methods”

Sample to Insight



Over-representation Analysis (ORA)

(D

Over-Representation

Functional Pathway Analysis

A | s O RA Differential Differentially Number of DE and
n a yS IS Expression ==p={Expressed (DE)j=3-iReference Genes in
Analysis Genes Each Pathway
Advantages
e Sj mple & powe rful Gene-level Gene-set‘(Piath;éyi) ) Assess Pathway
Statistics Statistics Significance

* Requires less input data

Pathway
Database

\ [DE Genes or Gene-level Statistics 357000

Impact
- Pathway Topology Factor
« Number of Reactions
« Position of Gene
« Type of Reaction

Disadvantages
Background assumption

Discards 90% of data
Assumes all genes are
independent (ignores
interactions)

Assess only the number of
significant genes

Many false positive




Functional Class Scoring

Example --- GSE,}

Sample to Insight

Get ranked \

list L of all the
genes on the
chip based /[ \
on a chosen For each .
measure of the gene set S: GeneraEt: fgnr;c: me:t %
difference of find the HEOKS =S 1ONS Bases e
thell expression . location of A o: runnu:'g-sum statls:lc: =
levels between the each gene s t rew:: pre;ert\tce ° : L c
DHenotypes A B in S within L oward top or bottom o

under study, e.g., ;/ l

\ tumor vs. normal /

Gene set

+FCT ES>0 Analyze significance of
this Kolmogorov-Smirnov

%‘ type statistic by

% H permutation testing

(D -

'8 .

R4

58 -FC | ES<0 }

Multiple hypothesis testing (MHT)
error control for multiple S’s using
the false discovery rate (FDR)

bands are locations in L
of genes from S

1. Identified differential expression gene

2. genedevel statics combined to pathway-level statistics,
statistics methods Kolmogorov-Smimov statistic, sum,
mean, median of gene-evel statistics,

3. Testpathway-level statistics

L
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Functional Class Scoring

Functional Class
Scoring (FCS)

Functional Pathway Analysis

IBifferenlial
'ExpressionL>

| Analysis

Differentially \ Number of DE and |
Expressed (DE)j=3»-Reference Genes in|
Genes ‘ Each Pathway |

Advantages
* More accurate than ORA

Gene-level Gene-set (Pathway) \ Assess Pathway

Statistics » Statistics Significance

Pathway
Database

* Uses entire list of genes

measu red \ [DE Genes or Gene-level Stalishcs]»—b~ Pathway

Pathway Topol Impact

athway lopology

« Number of Reactions 3| Factor
« Position of Gene

. = Type of Reaction

Disadvantages

* |gnores interactions

* Analyzes each pathway
independently
* Many false positive




Pathway Topology (PT)-Based Approaches

« Alarge number of publicly available pathway knowledge bases
provide information beyond simple lists of genes for each pathway

— KEGG

— MetaCyc
— Reactome
— RegulonDB
— SIKE

— BioCarta
— PantherDB

« These knowledge bases also provide information about gene
products that interact with each other in a given pathway, how they
interact (e.g., activation, inhibition, etc.), and where they interact
(e.g., cytoplasm, nucleus, etc.)

Sample to Insight
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Topology method

Topology designs for pathway deregulation. a Example of a particular pathway with 30 genes. In order

to deregulate this pathway on detection call level e.g. DC = 50 % (+/- 5 %) we needed to assign 14—16
affected gene to this pathway and allocate them on the pathway graph according to 3 topology
approaches. b In the community design two gene communities were selected to be affected (depicted

in red). ¢ Top scored betweenness genes were depicted in red. d Gene neighbourhood of order 2 of the
blue gene was affected (in red). The colour coding of graph edges represents activation (green) and
inhibition (red) interactions between the nodes Bayerlova, M., Jung, K., Kramer, F. et alBMC Bioinformatics 12(335) 2015

54


https://bmcbioinformatics.biomedcentral.com/
https://bmcbioinformatics.biomedcentral.com/

Pathway Topology

OO

Pathway Topology

Functional Pathway Analysis

PT Differential Differentially Number of DE and
Expression Expressed (DE) Reference Genes in
Analysis Genes Each Pathway
Advantages
| _ Assess Pathway
. ’ | Gene-level Gene-set (Pathway) )
* Considers each gene’s role, | statistics [ > | Statistics Significance

Pathway
Database

position, magnitude, and

\ [DE Genes or Gene-level Stahsbcs}—) Pathway

Impact
Factor

interactions.
. Pathway Topology
Able to “predict” e R

¢ of React

Disadvantages
* Requires more data

* Takes slightly longer to
process

Sample to Insight



Benefits of pathway analysis

Easier to interpret
Familiar concepts e.g. cell cycle

|dentifies possible causal mechanisms
Predicts new roles for genes

Improves statistical power
Fewer tests, aggregates data from multiple genes into
one pathway

More reproducible
E.g. gene expression signatures

Facilitates integration of multiple data types

Sample to Insight
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combine all of them

Benchmarking Approaches

Functional Pathway Enrichment Machine Learning Approaches

Hyper- 1 Class prediction r
geometric

test Pathway @ ROC-curve
scores

GSEA {Jfﬁ][}{]

ssGSEA

F1-score

2 Survival analysis

Pathway
scores @
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