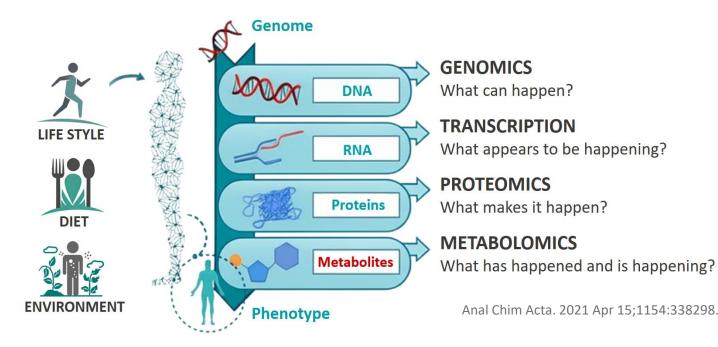
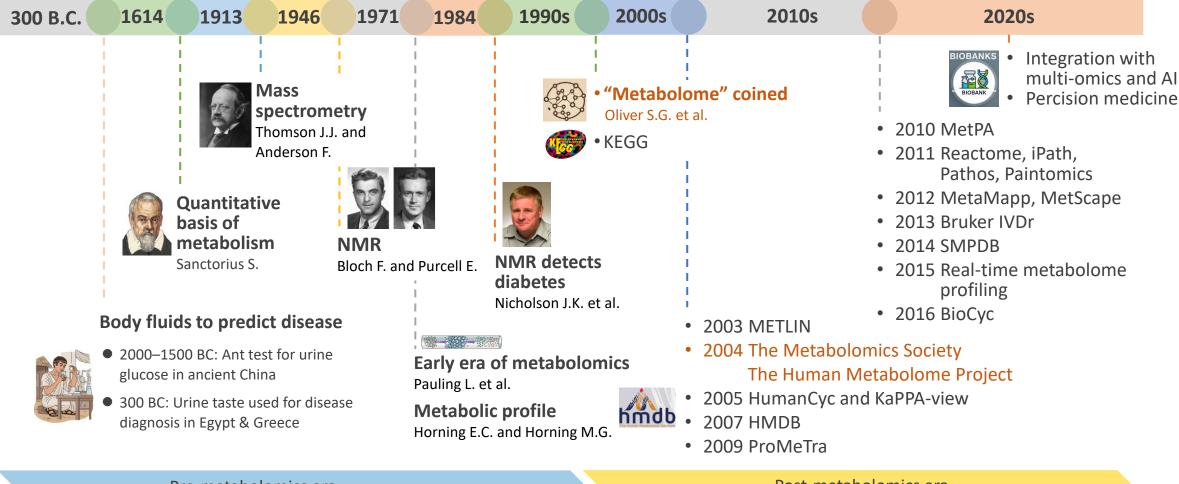
Taiwan Biobank Metabolomics Workshop


2025.06.12 | Taiwan Biobank

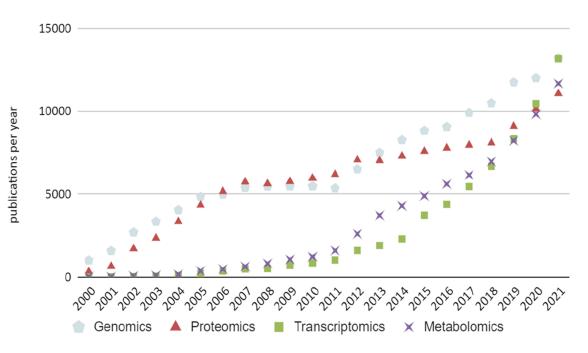
Outline


- Introduction to Metabolomics
- NMR Technology in Metabolomics
- Overview of the Taiwan Biobank Metabolomics Dataset
- Data Analysis Workflow of TWB NMR Metabolomics Dataset
- Demonstration / Hands-on

What is Metabolomics?

- **Metabolomics** is the comprehensive study of the small molecules that reflect the physiological state of a biological system.
- It provides a metabolic snapshot that links genetic and environmental changes to observable traits, thereby bridging the gap between genotype and phenotype.

The Evolution of Metabolomics: A Chronological Journey

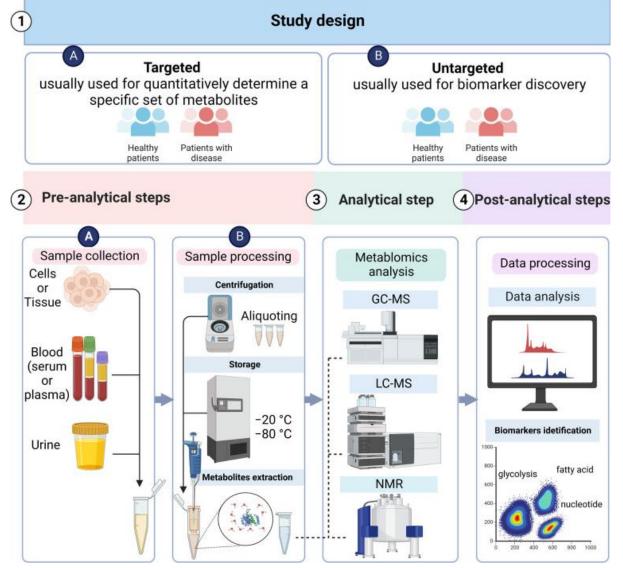

Pre-metabolomics era Instrumental and methodological development Post-metabolomics era Databases, tools and high-throughput techniques development

Why Metabolomics Matters?

- Captures the end-point of phenotype and real-time physiological state
- Sensitive to early disease detection, drug response, and environmental influences
- Enables biomarker discovery and advances precision medicine
- Integrates with other omics for systems biology

Challenges and Future Directions

- High complexity and variability, with limited metabolite annotation
- Requires standardization, advanced analytical tools, and AI/ML integration
- Expanded applications
 Public health, nutrition, sports science, mental health, aging, toxicology



Types of Metabolomics

- Targeted
- Untargeted

Metabolomics Workflow Steps

- Study design
- Sample collection and processing
- Platform choice
- Data processing, results interpretation, and biomarker identification

Diagnostics (Basel). 2023 Feb 23;13(5):861

Comparison of NMR, GC-MS, and LC-MS in Metabolomics

Feature	NMR	LC-MS	GC-MS
Sensitivity	Low (10 ⁻⁶ mol/L)	High (10 ⁻¹⁵ mol/L)	High (10 ⁻¹² mol/L)
Reproducibility	High	Moderate	Low
Quantitative analysis	Quantitative	Not very quantitative	Quantitative
Metabolite Coverage	Limited (< 200)	More	Few
Sample Preparation	Simple (buffer addition only)	Moderate (requires extraction, desalting, etc.)	Complex (requires volatilization; often needs derivatization)
Sample Destruction	Non-destructive	Destructive	Destructive
Throughput	High (fixed analysis time, simple workflow)	Moderate to high (depends on automation and setup)	Moderate to high (fast analysis but needs preprocessing)
Instrument Cost	High	Moderate	Moderate
Application	 Absolute quantification High-abundant metabolites Structural elucidation 	 Non-targeted/targeted metabolomics Biomarker discovery 	 Volatile metabolite Plant metabolomics Environmental studies

NMR Technology in Metabolomics

Basic Principle of NMR (Nuclear Magnetic Resonance)

Nuclear

Magnetic

Resonance

Before Magnetic Field

Inside atoms, tiny particles called nuclei spin in all directions. They are not affected by any magnetic force.

In Magnetic Field

When placed in a strong magnetic field, some of the spins line up with the field. This creates a tiny magnetic signal we can measure.

Signal Excitation and Relaxation

A short burst of energy makes the spins tip out of alignment. As they relax back, they release signals that we can detect.

From Signal to Spectrum

These signals are like echoes. A computer turns them into a chart showing what kinds of molecules are in the sample.

Bruker IVDr Platform

What is IVDr (in vitro diagnostic research)?

- A standardized, high-throughput NMR-based metabolomics platform
- Designed for in vitro diagnostic research across multiple biological fluids (e.g., plasma, serum, urine)
- Provides quantitative profiling of metabolites and lipoproteins with high reproducibility and strong inter-laboratory consistency.
- Automated sample preparation, data acquisition, and analysis using SOPs
- Globally harmonized system across labs using the same hardware/software

Applications & Benefits

- Clinical research, Epidemiology and population studies, Longitudinal cohort monitoring and Early disease biomarker discovery
- Ready-to-use interpretation modules

Overview of the Taiwan Biobank Metabolomics Dataset

Sample type and collection

- Plasma was collected in sodium citrate tubes
- Standardized phlebotomy and processing protocols are applied across all sites
- Tecan automatic liquid handling platform

Sample storage

- Plasma aliquots stored at –80 $^\circ C$
- Storage duration: up to 16 years (range: 0–16 years)

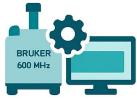
NMR platform

- Bruker IVDr system based on the UltraShield Plus 600 MHz NMR spectrometer
- Analysis modules

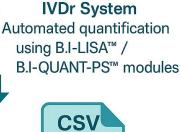
Data characteristics

B.I.-QUANT-PSTM for molecule quantification, and B.I.-LISATM for lipoprotein

Overview of the Taiwan Biobank Metabolomics Dataset


Two formats of data provided

- Raw NMR spectra (.fid, .1i, .1r) for custom processing <u>Bruker TopSpin software</u>
- Analysis-ready matrix (.csv) processed via Bruker IVDr system


Sample and metabolite information

- Total sample size: 4,210
- Metabolites quantified: ~150
- Visit <u>https://taiwanview.twbiobank.org.tw/</u> for details

Raw NMR spectrum (.fid or processed)

→ CSV

Individual Reports One report per participant Merged Tabular Data All reports integrated into a single tabular dataset (CSV)

Released for Statistical Analysis Released as structured dataset for downstream analysis

Taiwan Biobank Metabolomics Dataset: Metabolites Coverage

41 Metabolite Concentrations

- Alcohols and derivatives
- Amines and derivatives
- Amino acids and derivatives
- Carboxylic acids
- Essential nutrient
- Keto acids and derivatives
- Sugars and derivatives
- Sulfones
- Technical additives

Analysis Report

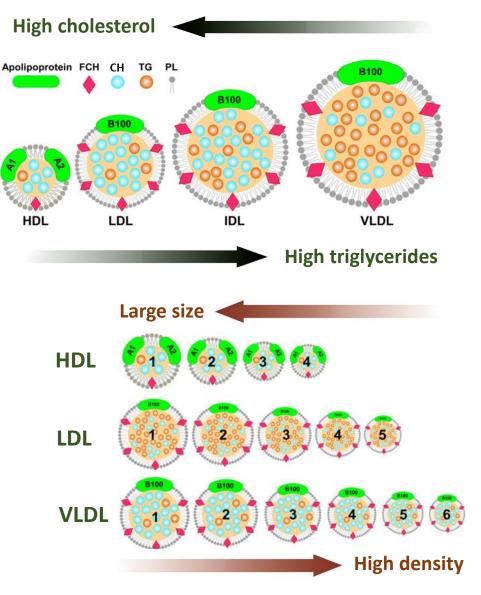
Bruker IVDr Quantification in Plasma/Serum B.I.Quant-PS[™]

Sample ID:	APGK_expno10.100000.11r
Measuring Date: Reporting Date:	14-Feb-2023 11:25:35 14-Feb-2023 12:53:51, 7 page(s), Version 2.0.0
Quantification Method Version:	

3 Amino acids and derivatives

Compound	Conc.	LOD	r	ρ	Δ	95% Range	Graphics (*)
	mmol/L	mmol/L	mmol/L	%	mmol/L	mmol/L	
2-Aminobutyric acid	< 0.05	0.05	0.000	0 0	0.894	≼ 0.10	
Alanine	0.47	0.02	0.474	100 🔵	0.007	0.29 - 0.64	
Asparagine	< 0.05	0.05	0.000	0 0	5.494	≤ 0.08	
Creatine	< 0.01	0.01	0.003	99 🔵	0.003	≼ 0.07	
Creatinine	0.09	0.01	0.090	99 🔵	0.003	0.06 - 0.14	
Glutamic acid	< 0.05	0.05	0.000	0 0	1.881	≼ 0.24	
Glutamine	1.00	0.02	1.038	98 🔵	0.043	0.30 - 0.83	
Glycine	0.26	0.01	0.256	100 🔵	0.005	0.17 - 0.44	
Histidine	0.09	0.02	0.085	99 🔵	0.002	0.07 - 0.16	
Isoleucine	0.08	0.03	0.077	97 🔵	0.009	0.03 - 0.11	
Leucine	0.15	0.01	0.152	97 🔵	0.013	0.07 - 0.20	
Lysine	0.26	0.04	0.259	70 〇	0.067	≼ 0.29	
Methionine	0.07	0.05	0.065	74 〇	0.013	0.05 - 0.13	
N,N-Dimethylglycine	< 0.01	0.01	0.007	97 🔵	0.001	≼ 0.01	
Ornithine	0.03	0.02	0.034	52 〇	0.032	≼ 0.16	
Phenylalanine	0.04	0.03	0.042	98 🔵	0.003	≼ 0.07	
Proline	0.86	0.05	0.862	80 〇	0.231	≼ 0.59	
Sarcosine	< 0.01	0.01	0.006	78 ()	0.001	≼ 0.01	
Threonine	0.29	0.04	0.293	54 ()	0.372	≼ 0.24	
Tyrosine	0.06	0.03	0.061	97 🔵	0.005	≤ 0.08	
Valine	0.33	0.03	0.330	100 🔵	0.009	0.15 - 0.35	

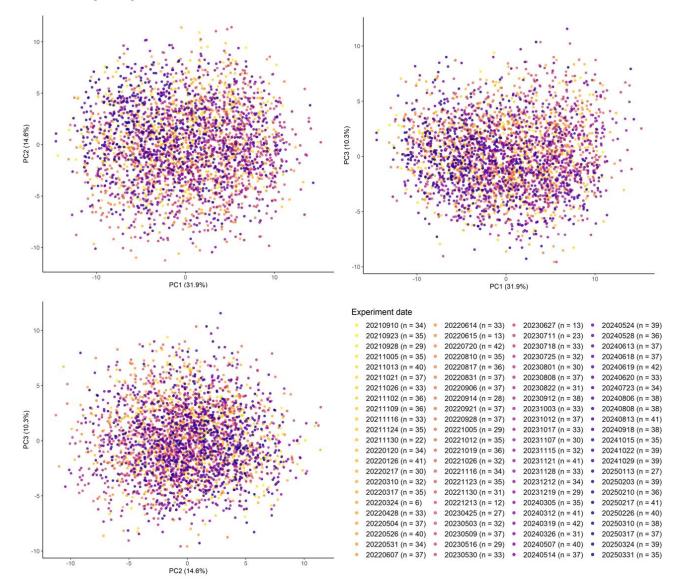
(*) Gray horizontal boxes represent 95% concentration range, black vertical lines represent sample value.

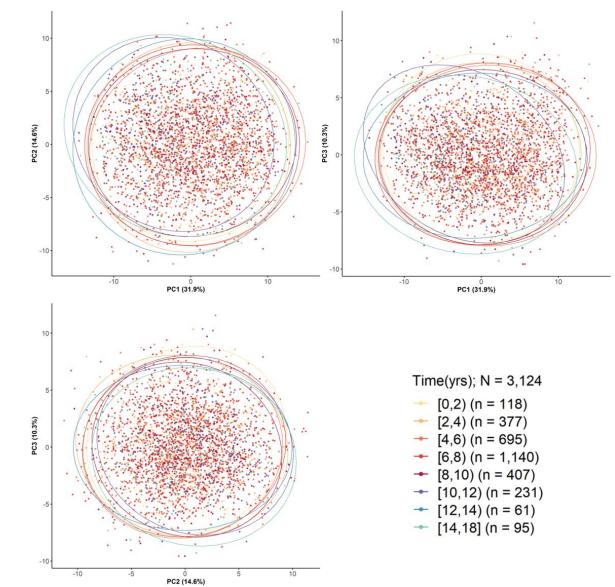

Taiwan Biobank Metabolomics Dataset: Metabolites Coverage

112 Lipoprotein parameters Major classes

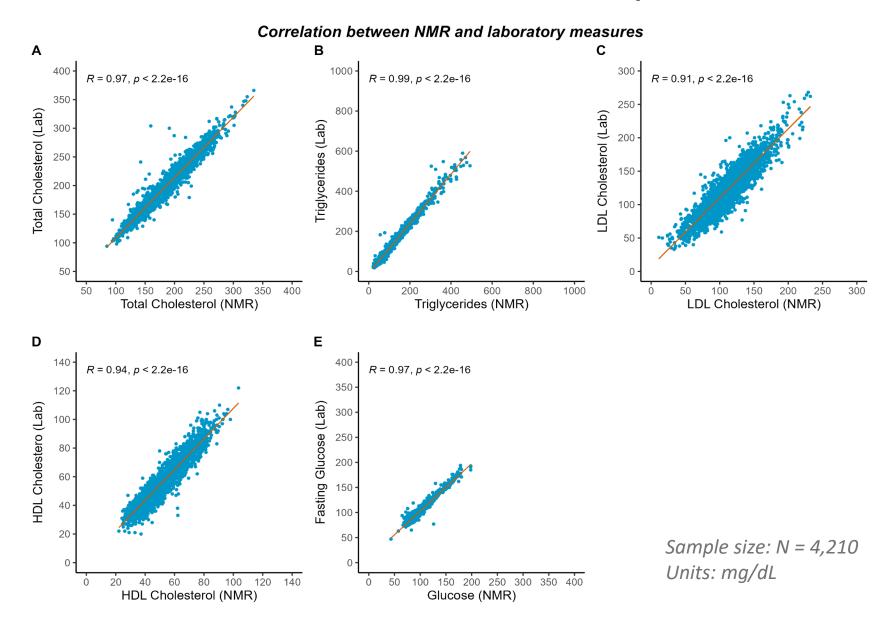
- VLDL, IDL, LDL, and HDL
 Subclasses
- LDL-1 to LDL-6,..., HDL-1 to HDL-4

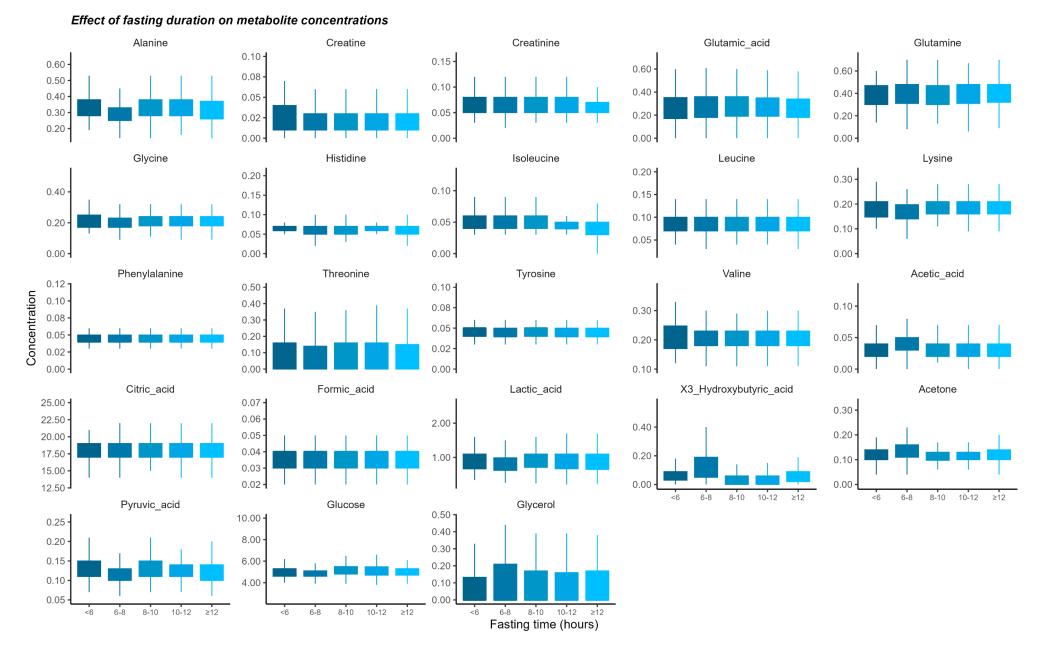
For each class and subclass

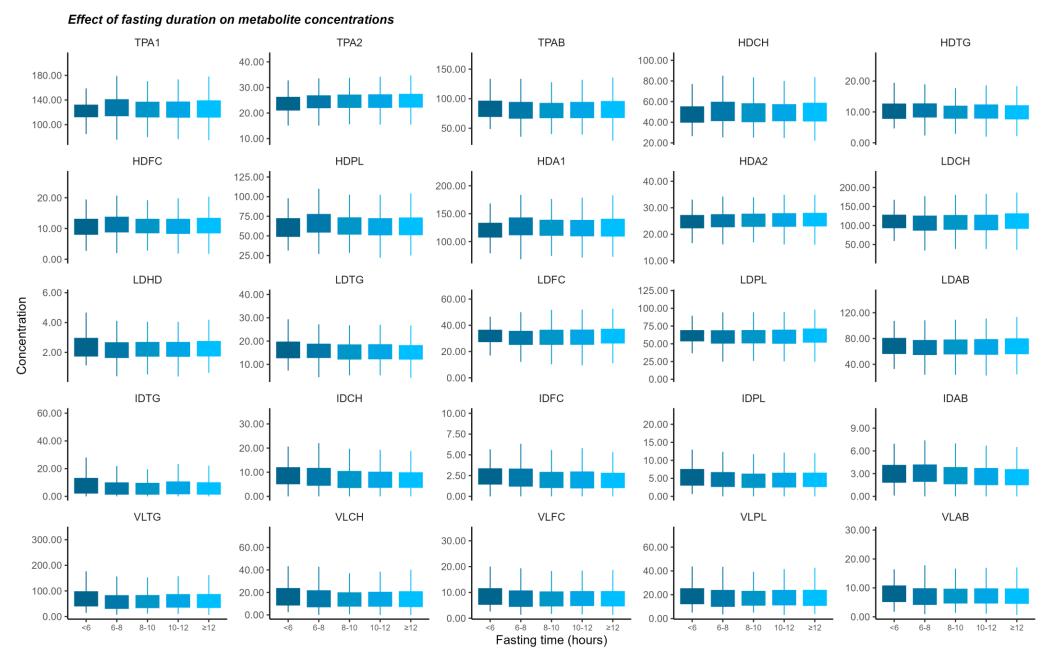

- Particle number (PN)
- Phospholipids (PL)
- Free cholesterol (FC)
- Esterified cholesterol (CH)
- Triglycerides (TG)
- Apolipoproteins (A1, A2, AB)

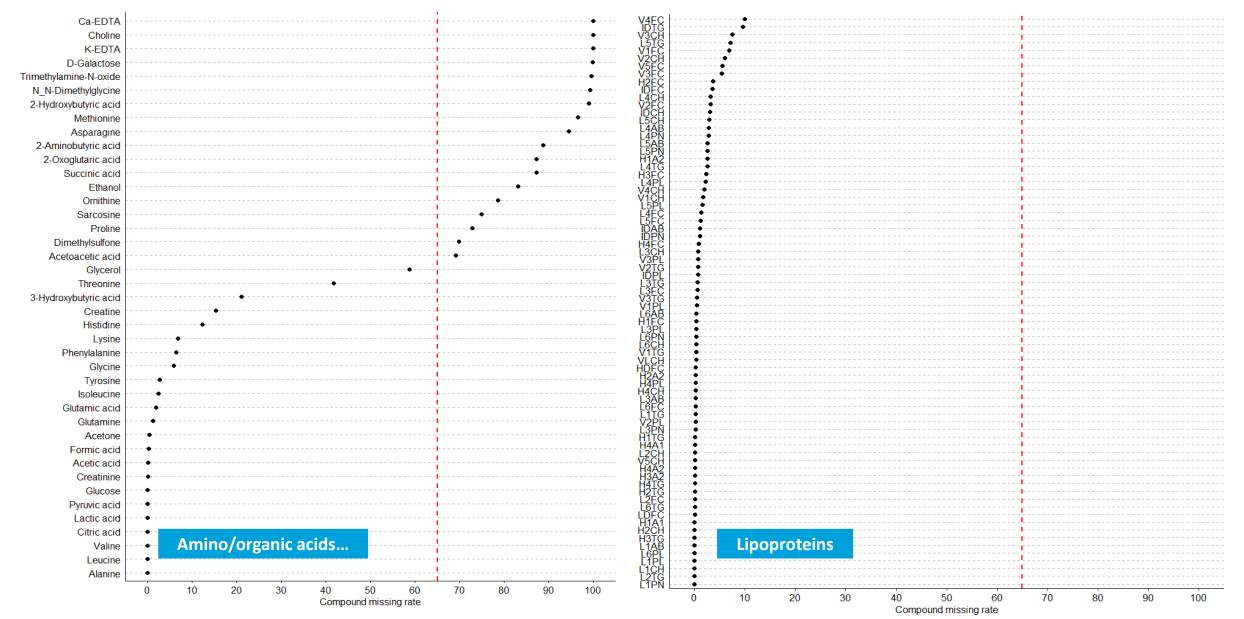

	TWB Metabolomics Cohort at baseline		
	Male	Female	Overall
•	n = 1,350	n = 2,177	n = 3,527
Age	51.3 (11.1)	51.2 (10.7)	51.3 (10.8)
Fasting time (hours)	10.7 (3.4)	10.6 (3.6)	10.5 (3.6)
Alcohol consumption	90 (6.7)	34 (1.6)	124 (3.5)
Smoking status	182 (13.5)	28 (1.3)	210 (6.0)
Betel nut chewing	40 (3.0)	2 (0.1)	42 (1.2)
BMI (kg/m²)	25.6 (4.1)	23.9 (3.9)	24.5 (4.1)
Experiment year			
2021	281 (20.8)	276 (12.7)	557 (15.8)
2022	116 (8.6)	522 (24.0)	638 (18.1)
2023	464 (34.4)	492 (22.6)	956 (27.1)
2024	338 (25.0)	608 (27.9)	946 (26.8)
2025	151 (11.2)	279 (12.8)	430 (12.2)
Blood storage time(years)	7.1 (2.6)	7.4 (2.7)	7.2 (2.7)

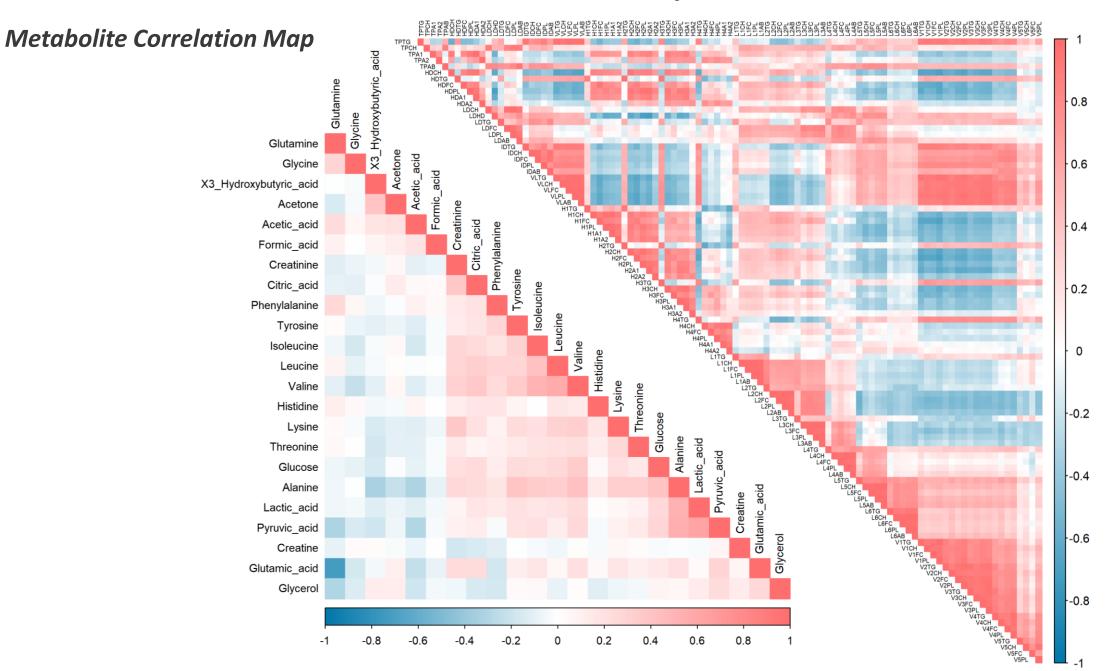
1. Continuous variables are presented as mean (S.D.); categorical variables are shown as n (%).

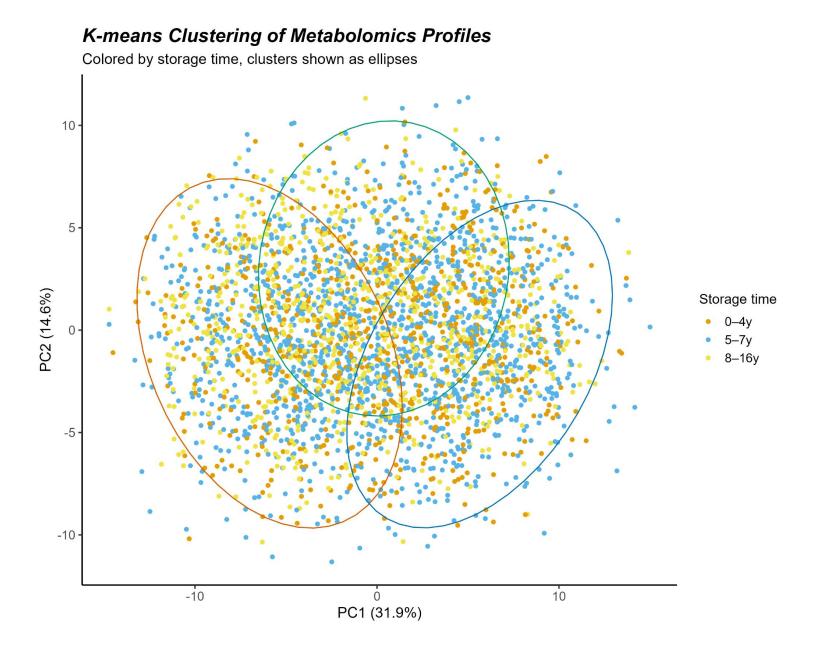

2. This table represents baseline participants. The TWB cohort additionally includes 683 individuals with follow-up data.




PCA by experiment date

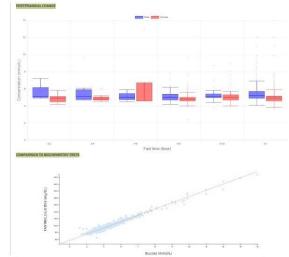

Blood storage duration before metabolomics experiment





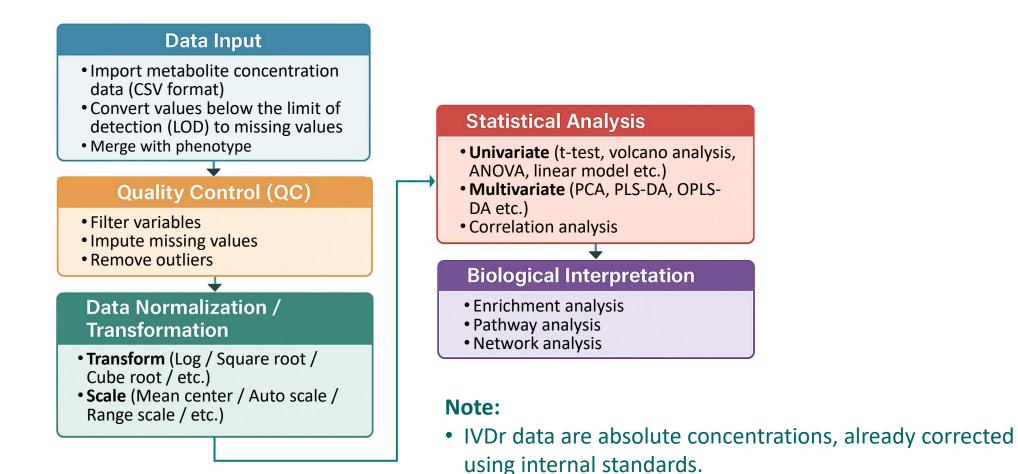
The missing rate for all 153 compounds

Web-Based Interactive Summary of TWB Metabolomics Data: Taiwan View



ABOUT 👻 BROWSE DATA DOWNLOAD TUTORIAL LOGIN

Glucose				٩
Glucose				
1 2				
METABOLITES \$	ANALYSIS METHOD \$	BIOSPECIMEN \$	# OF PARTICIPANTS AT BASELINE \$	# OF PARTICIPANTS AT FOLLOW-UP \$
ETHANOL	NMR, IVDr Platform	Plasma	323	185
TRIMETHYLAMINE-N-OXIDE	NMR, IVDr Platform	Plasma	3	8
2-AMINOBUTYRIC ACID	NMR, IVDr Platform	Plasma	134	174
ALANINE	NMR, IVDr Platform	Plasma	1,227	1,608
ASPARAGINE	NMR, IVDr Platform	Plasma	108	52



CORRELATION BETWEEN OTHER METABOLITE

ALL Male Female			
METABOLITES	ŧ	SPEARMAN'S RANK CORRELATION COEFFICIENT	P-VALUE
2-Aminobutyric acid		1.7328e-1	4.5264e-2
3-Hydroxybutyric acid		-1.6063e-1	4.7349e-7
Acetoacetic acid		-1.3634e-1	1.9690e-3
Alanine		3.8935e-1	1.0850e-45
Calculated Figures, Apo-A1 / Apo-B100, Apo-B100/Apo-A1		2.0597e-1	3.1991e-13
Calculated Figures, IDL Particle Number, IDL Particle Number		1.1596e-1	4.6709e-5
Calculated Figures, LDL Cholesterol / HDL Cholesterol, LDL-Chol/HDL-Chol		1.7381e-1	8.8630e-10
Calculated Figures, LDL-1 Particle Number, LDL-1 Particle Number		-2.4799e-1	1.1853e-18

https://www.biobank.org.tw/

Data Analysis Workflow of TWB NMR Metabolomics Dataset

• Common row-wise normalization (e.g., total area) may not be required and may distort values.