

Advanced IPA Training Based on a Long COVID Multi-Omics Study

Cleo Hsi 席佩妤 資深業務專員 Christine Hsiung 熊嘉妮 專案副理 Bioinfo@GGA.ASIA

Sample to Insight

Ingenuity Pathway Analysis

Install IPA on your computer

This installer will enable you to access IPA like other desktop applications on your computer (though still requiring an internet connection). Note: This is all you need to run IPA. It is not necessary to install Java separately from IPA.

Click on the button below to download the installer

IPA for Windows (64-bit) (Installer recommended for your computer)

Other options:

```
IPA for 32-bit Windows
IPA for macOS
```

For more information see this <u>help page</u>.

Note: If you have trouble installing or logging in with the IPA client, please click here for an alternate method to launch IPA.

Looking for more information about IPA? Click <u>here</u>.

IPA Installer Download (ingenuity.com)

Minimum Software Requirements

Windows OSWindows 11Windows SWindows 10
Windows 8BrowserMicrosoft Edge 94 or later
Chrome 110 or later
Firefox 91 or later Safari 16 or latermacOSSequoia
Sonoma
VenturaJava (JRE)JRE 1.8.0_xx or later

Minimum Hardware Requirements

- PC 1.25GHz, 2GB RAM (for lightweight usage of IPA)*
- PC 2GHz, 4GB RAM (Recommended)
- Mac 1.25GHz, 2GB RAM (for lightweight usage of IPA)*
- Mac 2GHz, 4GB RAM (Recommended)

Minimum Screen Resolution of 1280 x 800

*Lightweight usage of IPA includes Search, Build/Overlay operations and small dataset upload and analysis creation. For larger analyses and Comparison Analyses, IPA requires more memory.

For Causal Network Analysis, BioProfiler, IsoProfiler, Phosphorylation Analysis, Relationship Export, and Analysis Match-related features:

CoreTM i5 processor or equivalent running at 2 GHz or higher with 64-bit OS and Java, and at least 3 GB RAM free for Java. Screen resolution of at least 1280 x 800.

Notes:

- We recommend that you install the IPA client on your computer with this installer: <u>https://analysis.ingenuity.com/pa/installer/select</u>. The
 installed IPA client still requires you to have internet access to launch but does *not require* you to install Java (a JRE) or to launch IPA from
 a web browser.
- 2. Alternatively, you can launch IPA using Java Web Start, which requires a recent version of Java installed on your computer. Oracle has changed its licensing terms for Java: <u>https://www.java.com/en/download/</u>. Therefore, please ensure you are following Oracle's terms and conditions for the Java version on your computer should you choose to launch IPA via Web Start, which is available at this link: <u>https://analysis.ingenuity.com</u>. Help on installing and/or launching IPA can be found at the following links:
 - i. Mac: https://giagen.my.salesforce-sites.com/KnowledgeBase/articles/Basic_Technical_Q_A/Running-IPA-on-Mac
 - ii. Windows: https://qiagen.my.salesforce-sites.com/KnowledgeBase/articles/Basic Technical Q A/Running-IPA-on-Windows

IPA Installer Download (ingenuity.com)

Introduction to pathway analysis What is QIAGEN Ingenuity Pathway Analysis

- Introduction of Ingenuity Pathway Analysis
- What's new in Ingenuity Pathway Analysis

Create networks from scratch

Interpreting your 'omics data using IPA

- Data upload and analysis setup
- Canonical pathways and upstream regulators
- Comparison analysis

Agenda

Diseases and functions/Tox analysis
 Creating networks from gene list
 Bioprofiler
 Comparison analysis
 Summary

Introduction of pathway analysis

Functional Pathway Analysis

Khatri, Sirota, and Butte. PLoS Comp Bio. 2012.

An example: Analyzing variant data from Sample to Insight

 \rightarrow

Sample to data

NGS library prep Sequencing

- Platform- and assay-agnostic
- Whole genome, whole exome, custom panels

Data to information

Normalization and quality control Read mapping

Variant calling

QIAGEN CLC Genomics Workbench, Server and Cloud Computation

BaseSpace ad Amazon Web Service integration

Information to knowledge Data integration Metadata exploration Differential expression

 QIAGEN OmicSoft Suite, Lands, and APIs

Curated experiments

 QIAGEN OmicSoft Lands: OncoLand, DiseaseLand, Single Cell Land

- Knowledge to insight Interpretation Pathway analysis
- QIAGEN IPA

Variant interpretation

• QCI Translational, HSMD, HGMD and COSMIC

Portfolio designed to transition complex 'omics data into high-value actionable insights without the need for deep expertise

 \rightarrow

訊聯基因數位 E Why are we using Qiagen Ingenuity Pathway analysis? QIAGEN What do they Public PDE6A relate to each SLC6A14 /commercial LPCAT1 other? database C2 CFB Drugs and REG4 **CD55** chemicals TIMP1 Your DPP10 PDIA4 PRKG2 Pathway NAT8B dataset SHISA5 LCN2 CDH3 Disease 0 ACAT1 NAALADL1 APOBEC3B NMT2 Function KYNU TMEM63C S100A11 *THE PROPERTY* PI3 Network CDC25B CNNM2 CHRNA1 LRRN2 RMDN2 CNTFR Machine ORA/FCS/Topology CDC14A C7orf31 What are the Pathway Analysis learning BACE2 CXCL1 relationship SLC36A1 **WDR78** between each PKM

molecules?

What Can We Achieve with IPA?

- 1. Canonical pathway
- 2. Machine Learning disease pathway
- 3. Disease and function
- 4. Upstream regulator
- 5. Regulate effect

6. Network

J Allergy Clin Immunol. 2024 May;153(5):1268-1281. doi: 10.1016/j.jaci.2023.12.030. Epub 2024 Mar 29.

Galectin-10 in serum extracellular vesicles reflects asthma pathophysiology

proteinomics

> Chin Med. 2022 Jun 15;17(1):71. doi: 10.1186/s13020-022-00632-5.

Serum metabolomics analysis of deficiency pattern and excess pattern in patients with rheumatoid arthritis metabolomics

Sample to Insight

Ingenuity Pathway Analysis is powered by QIAGEN knowledge base

Over <u>14.2</u> million research findings

expert literature curation accessible to you in seconds Manuscripts, clinical trials and 'omics data D obtained from public and commercial sources (TCGA, GTEx, DrugBank, HumanCyc, OMIM, etc.) Weekly and quarterly updates with the latest disease, genetics, cancer and drug findings The high-quality, manually curated data allows for causality prediction

Over two decades of

Using IPA to Discover Relationships in Experimental Data

Fully supported:

What species identifiers are accepted for analysis by IPA?

- Atlantic Salmon (Salmo salar)
- Thale cress (Arabidopsis thaliana)
- Bat (Greater horseshoe bat, *Rhinolophus ferrumequinum*)
- Cat (domestic, Felis catus)
- Chicken (Gallus gallus)
- Chimpanzee (Pan troglodytes)
- Chinese hamster (Cricetulus griseus)
- Cow (Bos taurus)
- Crab-eating macaque (Macaca fascicularis)
- Dog (Canis lupus familiaris)
- Fission yeast (Schizosaccharomyces pombe)
- Fruit fly (<u>Drosophila melanogaster</u>)
- Golden hamster (Mesocricetus auratus)

- ✓ Guinea pig, domestic (Cavia porcellus)
- ✓ Horse (Equus caballus)
- ✓ Human (Homo sapiens)
- ✓ Mouse (*Mus musculus*)
- ✓ Pig (Sus scrofa)
- ✓ Rabbit (*Oryctolagus cuniculus*)
- ✓ Rainbow trout (Oncorhynchus mykiss)
- ✓ Rat (*Rattus norvegicus*)
- ✓ Rhesus Monkey (*Macaca mulatta*)
- ✓ Roundworm (*Caenorhabditis elegans*)
- ✓ Sheep (Ovis aries)
- ✓ Western clawed frog (Xenopus tropicalis)
- ✓ Zebrafish (*Danio rerio*)

Orthologs Gene from NCBI Eukaryotic Genome Annotation Pipeline

Get more complete mapping during dataset upload!

Vendor IDs	Gene	Protein	Transcript	microRNA	SNP	Chemical
Affymetrix (na36)	Entrez Gene (2023/8)	GenPept	Ensembl (110)	miRbase (mature)	Affy SNP IDs	CAS Registry Number
Agilent	GenBank (257)	International Protein Index (IPI)	RefSeq (human \ mouse)	miRBase (stemloop)	dbSNP	HMDB
Life Tech (ABI)	Symbol-human (HUGO/ HGNC, EG)	UniProt/ Swiss- Prot Accession (2022_02)	UCSC (hg18)			KEGG
Codelink	Symbol- mouse (EG)		UCSC (hg19)			PubChem CID
Illumina	Symbol- rat (EG)		UCSC (hg38)			
Ingenuity	GI Number					
	UniGene					

Omics data type

- RNA-seq
- scRNA-seq
- Microarray
- Nanostring
- qPCR
- ChIP-seq
- Proteomics
- Metabolomics
- RNAi
- CRISPR
- WGS/WES etc.

	Activation z-score -6.040 5.667	體學種類
	Canonical Pathways	t_0 transcriptomics t_60 transcriptomics t_120 transcriptomics t_0 proteomics t_60 proteomics t_120 proteomics t_0 metabolomics t_120 metabolomics t_120 metabolomics t_120 metabolomics
	Oxidative Phosphorylation	
	Mitochondrial Dysfunction	
路徑名稱	Coronavirus Pathogenesis Pathway Neutrophil Extracellular Trap Signaling Pathway Granzyme A Signaling LXR/RXR Activation Fatty Acid β-oxidation I Macrophage Alternative Activation Signaling Pathway ElF2 Signaling Xenobiotic Metabolism PXR Signaling Pathway Neurovascular Coupling Signaling Pathway Ethanol Degradation IV Ethanol Degradation IV Ethanol Degradation II Oxidative Ethanol Degradation III MicroRNA Biogenesis Signaling Pathway Superpathway of Citrulline Metabolism Superpathway of Cholesterol Biosynthesis Glutaryl-CoA Degradation IGF-1 Signaling Xenobiotic Metabolism General Signaling Pathway RHOA Signaling Xenobiotic Metabolism General Signaling Pathway Glutathione-mediated Detoxification Sirtuin Signaling Pathway Ribonucleotide Reductase Signaling Pathway CREB Signaling in Neurons Salvage Pathways of Pyrimidine Ribonucleotides Superpathway of Methionine Degradation	

plore the QIAGEN Knowledge Base
is in silico
e of novelty in a hypothesis

PMID: 23213241

Selected biomedical relationships between different types of Attributes for selected biomedical relationships entities EGF – EGFR cetuximab – EGFR

Cetuximab is a metastatic colorectal cancer drug. EGFR is a target of cetuximab. Molecular interactions enable you to reconstruct a pathway between EFG, EGFR and the pathological process metastasis. EGFR is a known member of the canonical pathway Colorectal Cancer Metastasis Signaling. In addition to metastatic colorectal cancer, EGFR is involved in other diseases, for example non-small cell lung carcinoma and glioblastoma. Activation of cell proliferation and inhibition of apoptosis by EGFR are known oncology mechanisms.

EGF – EGFR [one of many]

Type: activation	Type: phosphoryla
Direction: directional	Direction: directio
Effect: increases	Effect: decreases
Directness: direct	Cell line: CaR1 ce
Tissue or primary cell: epithelial cells	Organism: human
Subcellular location: plasma membrane	Experiment: anti-
Source: PubMed PMID: 17909010	Source: PubMed

EGFR – Proliferation of cells

[one of many]

Туре:	causation	
Directio	n: directiona	
Effect:	increases	
Tissue o	or primary cell:	epithelial cells
Subcell	ular location:	plasma membran
Source:	PubMed	PMID: 22674072

EGFR – Glioblastoma

[one of many]

[one of many]

Type: causation
Direction: directional
Effect: increases
Organism: human
Source: PubMed PMID: 24782454

OXFORD

Human Molecular Genetics, 2024, Vol. 33, 15, 1367–1377 https://doi.org/10.1093/hmg/ddae076 Advance access publication date 4 May 2024 Original Article

From data to discovery: AI-guided analysis of disease-relevant molecules in spinal muscular atrophy (SMA)

Ines Tapken^{1,2}, Daniela Kuhn^{1,3}, Nico Hoffmann¹, Nora T. Detering^{1,2}, Tobias Schüning¹, Jean-Noël Billaud⁴, Stuart Tugendreich⁴, Nadine Schlüter³, Jeff Green⁴, Andreas Krämer⁴, Peter Claus^{1,2,*}

¹SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Feodor-Lynen-Str. 31, Hannover 30625, Germany

²Center for Systems Neuroscience (ZSN), Bünteweg 2, Hannover 30559, Germany

³Hannover Medical School, Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Carl-Neuberg-Str. 1, Hannover 30625, Germany ⁴QIAGEN Digital Insights, 1001 Marshall Street, Redwood City, CA 94063, United States

*Corresponding author: SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Feodor-Lynen-Str. 31, Hannover 30625, Germany. E-mail: peter.claus@smatheria.org

Abstract

Spinal Muscular Atrophy is caused by partial loss of survival of motoneuron (SMN) protein expression. The numerous interaction partners and mechanisms influenced by SMN loss result in a complex disease. Current treatments restore SMN protein levels to a certain extent, but do not cure all symptoms. The prolonged survival of patients creates an increasing need for a better understanding of SMA. Although many SMN-protein interactions, dysregulated pathways, and organ phenotypes are known, the connections among them remain largely unexplored. Monogenic diseases are ideal examples for the exploration of cause-and-effect relationships to create a network describing the disease-context. Machine learning tools can utilize such knowledge to analyze similarities between diseaserelevant molecules and molecules not described in the disease so far. We used an artificial intelligence-based algorithm to predict new genes of interest. The transcriptional regulation of 8 out of 13 molecules selected from the predicted set were successfully validated in an SMA mouse model. This bioinformatic approach, using the given experimental knowledge for relevance predictions, enhances efficient targeted research in SMA and potentially in other disease settings.

Keywords: spinal muscular atrophy; SMA; network biology; artificial intelligence; motoneuron disease

Introduction

Spinal Muscular Atrophy (SMA) is a rare monogenic disease caused by mutations or deletions of the Survival of Motoneuron 1 (SMN1) gene [1]. Ubiquitous reduction of the SMN protein results primarily in the degeneration of alpha-motoneurons in the brain stem and spinal cord followed by muscular atrophy [2, 3]. Untreated patients with the most common subtype, SMA type I, die within the first two years of life [4]. Current treatments enhance SMN protein levels in the central nervous system (CNS) or systemically, respectively, prolonging survival of patients [5–10].

Although SMA is monogenic, it is a disease involving several molecular, cellular, and systemic networks: On the genetic level (0), SMN is encoded by a second gene, SMN2, which differs from SMN1 by a crucial base transition resulting in about 20% residual functional full-length SMN [1, 11]. The SMN2 copy number varies (CNV) from 0-8 copies leading to an inverse correlation of copy number and disease severity, formerly clinically classified in types 0-IV [4, 12]. At the protein level (II), SMN interacts with proteins via several binding domains and forms complexes in different cellular compartments [13]. It has multiple functions involved in basal cellular processes, e.g. snRNP assembly [14–16], translation [17, 18], transcription [19, 20], R-loop resolution [21], and cytoskeleton regulation [22–26]. On a systemic level (III), SMA affects peripheral

organs resulting in a multi-organ disease [27–29]. At phenotypic or clinical level (IV) the complexity increases since patients differ in disease severity, disease onset, development, and genetic modifiers [4, 12, 30-32]. Unfortunately, no available treatments cure SMA, due to limitations in timing, dosage, and response [32, 33]. The pathological mechanisms after SMN loss are still elusive. Although several dysregulated pathways in SMA are known, the molecular network behind this cause-and-effect relationship remains largely unexplored. The integration and interpretation of single experimental observations in a network of molecular disease mechanisms is challenging. Bioinformatic tools enable integration of scattered observations into a network. Prime examples for this conceptual approach are rare diseases such as SMA caused by a single gene defect, which enables the analysis of the relationship between the genetic cause, molecular alterations, and phenotypic outcome. Disease-specific molecular networks can represent the current knowledge of the disease. We hypothesize that we could use a machine-learning based algorithm to assemble new molecular networks that identify novel diseasespecific molecules and molecular relationships. This approach could help explain the pathogenesis and help identify new potential targets of interest. In this study, an artificial intelligence (AI)based approach was used to analyze causal relationships in SMA

Figure 1. Artificial intelligence-predicted context network for spinal muscular atrophy. (A) Schematic representation of the AI-prediction algorithm and network construction. SMN (green circle) is the genetic cause and SMA (green cross) the disease outcome. In the QIAGEN Knowledge Base (QKB), interactors (pink circle) and causal relationships (black line: protein-protein interaction (PPI); grey line: Function), and dependency keywords (arrow: Direction; orange circle: Increases; blue circle: Decreases) are curated. The downstream profile of the disease-causing molecule is compared to other molecules (X) and similarities are ranked for potential relevance in the disease context. A context network is displayed including known and predicted disease-relevant molecules. Those were selected based on their connectivity to present a network to SIA) and predicted potentially relevant molecules (8). Context network for SMA. The network includes known disease relevant molecules (connected to SIA) and predicted potentially relevant molecules with their direction of regulation (orange), blue). Functional outcomes are displayed on the right. Prediction activation (orange)/inhibition (blue): Regulation is predicted from interacting molecule measurements. Color codes for lines are based on the same concept. Molecules shapes represent their type.

Received: January 18, 2024. Revised: April 4, 2024. Accepted: April 22, 2024 © The Author(s) 2024. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

						– 🗆 X
	File Edit View	Window Help			Provide Feedbac	k Support Gene Chen Close IPA
	Create New	Genes and Chemicals Diseases and Functions Pathway Spinal muscular atrophy [spinal muscle degeneration, spinal m	vs and Lists Datasets and Analyses	Advanced Search	Process RNA-seq o	data QIAGEN Land Explorer QIAGEN
	Proiect Manager	× Search Results				– п х
Мо	lecule Annotations					>
A	dd To My Pathway	Add To My List Create Dataset Customize Tab	le 🏬 🗛		Symbol AAR	S1 - NEFL (1/2) 🗸 🔍 🔊
	🛆 Symbol	Entrez Gene Name	Location	Type(s)	Biomarker Application(s)	Drug(s)
	AARS1	alanyl-tRNA synthetase 1	Cytoplasm	enzyme		
	acetaminophen		Other	chemical drug		
	ALT (family)		Other	group	efficacy, safety	
	amantadine		Other	chemical drug		
	apitegromab		Other	biologic drug		
	AR	androgen receptor	Nucleus	ligand-dependent nuclear receptor	diagnosis, disease progression,	clascoterone, nandrolone phenpro
	ASAH1	N-acylsphingosine amidohydrolase 1	Cytoplasm	enzyme	unspecified application	
	ASCC1	activating signal cointegrator 1 complex s	Nucleus	transcription regulator		
	ATP2A1	ATPase sarcoplasmic/endoplasmic reticul	Cytoplasm	transporter	unspecified application	
	ATP7A	ATPase copper transporting alpha	Plasma Membrane	transporter		
	BAG3	BAG cochaperone 3	Cytoplasm	other		
	BCL2L1	BCL2 like 1	Cytoplasm	other	efficacy, prognosis	LP-118, AZD0466
	BICD2	BICD cargo adaptor 2	Cytoplasm	other		
	BSCL2	BSCL2 lipid droplet biogenesis associated,	Cytoplasm	other		
	butyric acid		Other	chemical - endogenous mammalian		
	C1QB	complement C1q B chain	Extracellular Space	other		
	CASQ1	calsequestrin 1	Cytoplasm	other	unspecified application	
	ceramide		Other	chemical - endogenous mammalian		
	CHCHD10	coiled-coil-helix-coiled-coil-helix domain c	Cytoplasm	other		
	CHMP1A	charged multivesicular body protein 1A	Extracellular Space	peptidase		
	creatine		Other	chemical - endogenous mammalian	efficacy, safety	
Sol	CREATINE KINASE	family)	Other	group	efficacy, safety	

Diseases and Function

Create networks from scratch and test activity in silico

<u>New feature:</u> Cells and Tissues overlay

Predict cell types associated with the genes on your network or pathway using data from The Human Protein Atlas

Other Plasma Membrane USP Cytoplasm BAG3 BCL2 MM50 BICD2 Nucleus SETX Spinal muscular atrophy ŚMN2. SMNT GEMIN2 HDAC1 SNRPD3 SNRPF LO, PP (1) VRK1

- Search for genes
- Build: grow (molecular or disease a function)
- Overlay: Molecule activity predictor, Drug, Cells & Tissues
- Drug: IPA Chem View

Sensitive Addresses, 50	< Pielgela Trigo	Start Genetica			
Tome + HANDER wAND	O Charl Setting * denses	Deservingery + Sale for Sele-	· Bos Pills Dormal		
targie Prijet		Case B	NM for IMPO'R to Discontinuous		BB+00 BBX=
here a		Carrie 1	one of the second of the second secon		
page 2	1 D				· series refered comm
Service) *					 Annual transformer
Separati *					gastrolinatina Lonen
Demologen .					e met
Tousdategry *	Test Street				· ter
(issuedure *					 mail representation system mail(s)
					C particular
Taka -		and the second se			B servery system.
	Seriet weighter	1.0			· untrary spillent
					A tex
	2 metalet invest	De la Parte			
	11				
	1				
	A new party street street	1. S. S.			
		40			
	The property of the				
	refinenziar beren	·2 ·			
		· ^ ^ ^	de de de	and and	
	1		Date Expression (FPER)		
			Construction of the second		

Expression in Rat, Mouse, and Human Disease

Mutation frequency

b) tentine COLLER · Incipies makes C.Santo Data Printe - . Charlotten * Strange Principles Winner + Makras - Ante · has being · builded Second herure. (Prace Game FIRSH for SIMADA by PromarySide Arquil Scienti Procession Annual Researcharges Decker Lead States Canadionary Lead States Tates Scientification Canadionary Scientification Sc A Anda generation in the Internet Organization Internet Internet State Internet State Internet The second second second ************ 1 1,000 · with an a state of the state the fame And Statements STATISTICS STATISTICS - material and · deliberto s · North Address of the of Manhar a 7 4 and a state of the 12 National Serve P1 20000000 A * -formation," A - MARK----Ferreral J tere barrent (free) 14

Cell line expression

Tenerard TOLLAR · Dot pro Dotate Stant Devices . These + Hastine wast Ocurchency + docume time time + have to have · monthly Downad Gene FININ for SMAD4 by Tursor Type ----Statutes out-balled Same Span Rampin Span 4. 40 . ۰.

Tumor expression

Survival plots

Hematopoietic expression (BluePrint)

Sample to Insight

IPA with OmicSoft Land Explorer

Carata Narra	Genes and Chemicals	Diseases and Functions Pathways and Lists Datasets and Ar	alyses	c		QIAGEN Land Explorer
Create New	EGFR		Search	search Light		QIAGEN
Project Manager	×	Search Results				- 🗆 X
L	A-7 Sort Refresh	Genes and Chemicals				
My Projects	A	Add To My Pathway Add To My List Create Dataset	BioProfiler Interaction Network Ac	tivity Plot	# 1 - 100 ((1/2) ~ ()
> CMU_Hung	_ LRNAseq	The search for EGFR matched 158 items.				
> DEARDS	EDNIA 2	□ _ # Symbol Matched Term	S	Synonym(s)	Entrez Gene Name	Location
> exosome m	iiRNA 2	□ 1 EGFR EGFR vill, Ev	GFR1, Egfr, HER1 (EGFR)	9030024J15RIK, C-ERBB, EGFR1, EGF receptor, EGFR vIII,	epidermal growth factor receptor	Plasma Membrar
> 🖿 2023-demo				EGF-TK, epidermal growth factor receptor, ERBB, ERBB1, Errb1, FRRP HFR1 HFR1 (FGFR) MENA NISBD2 PIG61 wa-2 Wa ⁴	i i i i i i i i i i i i i i i i i i i	
> Isoform > III HTCH Dr.Li	u 2022-12-16					
> MOMC1020						
> CGU_202210	018					
> BIONET				Chasse	which you wort	
> 🖿 CMUHuang	1				which you want	
OmicSoft I	Land Explorer: Sa	ample-level experimental data				
Data Type /	Data Source	Normal Tissue	Cell Lines	Oncology Consortia	Oncology Studies	Disease Studies
RNA-seq ex	pression:	Solid tissue (GTEx), Solid tissue (HPA), Blueprint	Cancer cell lines (CCLE)	TCGA, TARGET, BeatAML, ICGC, CGCI, CCLE+GTEx+TCGA, ENCODE RNA-associated gene knockdown	General oncology, Mouse studies	Human disease, Mouse disease, Rat disease
Microarray e	expression:	Solid tissue (GTEx)	Cancer cell lines (CCLE), Cell line (Other)	es TARGET, expO, METABRIC, CCLE+GTEx	General oncology, Metastasis, Mouse studies	Human disease, Mouse disease, Rat disease
Differential r	egulation:	Solid tissue (GTEx)	Treated cells (LINCS)	TCGA, TARGET, ENCODE RNA- associated gene knockdown	General oncology, Metastasis, Mouse studies	Human disease, Mouse disease, Rat disease
Alteration fre	equency:		Cancer cell lines (CCLE), Cell line (Other)	es TCGA, TRACERx, BeatAML, ICGC, TARGET, METABRIC	General oncology, Metastasis	
Survival by e	expression:			TCGA, BeatAML, TARGET, CGCI	General oncology, Clinical outcomes	
Single Cell d	differential regulation	: Human Cell Landscape (HCL), Tabula Sapiens			Human Disease (UMI), Human Disease (non-UMI), Mouse Disease (UMI), Mouse Disease (non-UMI)	Human Disease (UMI), Human Disease (non-UMI), Mouse Disease (UMI), Mouse Disease (non-UMI)
Protein expr	ession:	Solid tissue (GTEx)	Cancer cell lines (CCLE)		General oncology	

IPA Gene View :OmicSoft Land Explorer

•

TCGA-B38-G33

- Through DiseaseState filter, to observe the expression difference of EGFR gene in cancer type in TCGA
- Select a specific experimental group to view more detailed information.

TCGA_B38_GC33

Analysis matching

Automatically discover other IPA Core Analyses with similar (or opposite) biological results as compared to yours, to help confirm your interpretation of the results or to provide unexpected insights into underlying shared biological mechanisms

Summary Graphical Summary Pathway	/s Upstream Ana	lysis Diseases & Functions	Regulator Ef	fects Netwo	rks Lists	Analysis Match	Molecules						
Evaluate Metadata View As Heatmap	View Comparis	on Customize Table	- ■							z-sc 9	7.12 - 35.7 (1/70	3) ~ «	>> •
nalysis Name 🕴 🕇	Project T ×	case T × case.t T ×	case.t T ×	case.t T ×	comp T ×	сотр т ×	comp T × webli T ×	СР (г Т	× UR (z T	· × CN (z • >	⊂ DE (z ▼	< _{\(z т \)}	^C DM (z ¹
358- normal control (a duer organoid) 3-D cultu	SingleCellHuman.	normal_control	kidney organ	3-D culture	Cluster vs Ot	nephron pro	GSI 11 0 //www	. 50.00	52.09	46. 9 na	lysis	47.23	25.79
9- normal control [skeletal muscle] NA 8925	RatDisease A	nalvsis	skeletal muscle	NA	Treatment vs	. TreatTime[da	GSE57816.GPL1 https://www	55.90	45.83	38.73	47.27	46.93	15.79
71- normal control bronchial enithelium air lig	SingleCellHuman	normal control	bronchial epi	air liquid int	Cell Type vs	pulmonary io	sind at a cote	55.90	48.99	30.00	51.57	46.62	13.41
54- normal cont A A LA A C LA air lig	SingleCellHuman	normal control	bronchial epi	air liquid int	Cluster vs Ot	pulmonary io	GSE102580_UN https://www	55.90	48.99	30.00	51.57	46.62	13.41
5- hepatocellular carcinoma (LIHC) [liver] NA 116	OncoHuman	hepatocellul	liver	NA	Treatment1 v	CellLine:Infec	GSE20948.GPL5 http://www	55.90	52.92	26.46	50.53	46.45	16.87
349- intrahepatic cholangiocarcinoma (liver) 53	SingleCellHuman	intrahepatic	liver		Cell Type vs	cytotoxic T ce	GSE14278	55.90	51.12	24.49	53.59	46.28	31.02
3- normal control [skeletal muscle] NA 8919	RatDisease	normal control	skeletal muscle	NA	Treatment vs	. TreatTime[da	GSE5	.00	57.45	30.00	45.13	45.89	15.11
545- normal control [embryo] differentiation me	SingleCellHuman	normal control	embryo	differentiatio	Cluster vs Ot	embryonic st	GSE1	.00	56.67	31.62	44.96	45.81	27.78
682- normal control in the sentiation me	SingleCellHuman	normal control	embryo	differentiatio	Cell Type vs	embryonic st	GSE1	.00	56 67	31.62	4 96	45.81	27.78
7- disea	HumanDisease	disease contr	airway epith		Treatment1 v	SamplingTim	GSE4	.00	50.99	30.00		45.38	18.48
219- 1	SingleCellHuman	normal control	retina	NA	Cluster vs Ot	retinal rod ce	GSE1	.90	40.00	31.62	53.59	45.28	18.65
0- no	RatDisease	normal control	skeletal muscle	NA	Treatment vs	. TreatTime[da	GSES	.90	50.14	30.00	01120	45.25	14.43
557-	SingleCellHuman	osteoarthriti.	synovial mem		Cluster vs Ot	synovial fibr	GSE1	.00	53.85	31.62	45.16	45.16	16.44
8- no	HumanDisease	normal control.	foreskin	4-thiouridine	Treatment1 v	SampleMater	GSE59	0.00	53.96	30.00	46.13	45.02	15.61
pro	MetastaticCancer	prostate an	prostate	N	Disease vs. N	LandSam T	GSE6919.GPL8: 1105.//WWW	50.00	57.45	33.17	38.59	44.80	34.62
nep	HumanD'	nephroliniasis	papillary duct				GSE73680	50.00	53.85	30.00	44.96	44.70	24.88
378-	SingleCellHuman	colorectal	colonrect	CO	ompa	re	TET	00	58.31	33.17	37.19	44.67	33.85
388-	SingleCellMouse	normal control	embryo	0.	ompa		SE	00	56.57	22.36	46.	43.76	13.38
0818-	SingleCellHuman	normal control	bladder				Tab	00	54.77	22.36	46.13	43.31	26.44
6- b	OncoHuman	breast carcin	breast	de tinib	Treatment vs	. CellLine: a	GSE	24	4:	20.00		43.02	8.39
norm	MouseDisease	normal control	lung	NA	Treatment vs	. ExperimentG	GSE	10	44.91	22.36	48.38	42.89	12.46
51- Jung adeus	SingleCellHuman	lung adenor	lung	NA	Cell Type vs	unassigned c	E-M	0	41.46	26.46	ET A	42.88	25.93
68- normal control (fetal testis) 5367	SingleCellHuman	normal control	fetal testis		Cluster vs Ot	unassigned c	GSE		61.64	47.96	61.89	42.87	21.80
a normatic contratilities at NA 60831	PatDisease	normal control	heart	NΔ	Treatment vs	TreatTime(Su	GSE	0	42.00	36.06	42.76	42.70	12 79
diet induced obesity Jungi NA 20248	MouseDisease	diet induced	lung	NΔ	Disease vs. N	DiseaseState	GSE38	0.00	45.83	33.57	41.26	42.66	10.20
Author is licensed under	SingleCellHuman	normal control	foreskin	nellet culture	Cell Type yr	chondroote	GSE160625 UN https://www.	40.82	46.00	30.00	53 50	42.60	14.20
15- northa ConBry #Nett NA 2522	PatDiceace	normal control	heart	NA NA	Other Comp	Tissue:Gend	GSE53960 GPL1 https://www.	50.00	48.11	28.28	43.76	42.50	10.05
781 normal control (foreskin) nellet culture:TG	SingleCellHuman	normal control	foreckin	nellet culture	Cluster vs. Ot	chondroote	GSE1505	50.00	50.00	26.46	42.53	42.25	20.41
71 normal control (ambrid) differentiation me	SingleCellHuman	normal control	embryo	differentiatio	Cell Type vs	chondrogeni	GSE10	00	41.46	30.00	47.27	42.25	14.89
5. normal control (liver) carivactatio 6262	PatDicease	normal control	liver	carivactatio	Treatment w	TreatTimeIda	GSET		41.40	26.46	46.12	42.10	9.52
40. idiopathic pulmonany fibrosis (bronchoalw	SingleCellHuman	idionathic n	bronchoalve	cenvastatin	Chuster vs. Ot	epithelial cell	GSE15		45.05	20.40	37.10	42.10	27.22
pop small cell lung carsinema (lung) NA 1141	OncoHumon	non small col	bioricitoaive	NA	Other Comp	Epithenal ten	GSETS		27.71	24.43	37.15	42.00	12.00
C D22 Tumor un Norm DDKM 2018 00 28 04/02	Actor	non-sman cer	lung	NA	Other Comp	Shiokingstat	GSETS		57.71	20.00		42.03	15.20
C P32 Tumor vs Norm RPKM - 2010-09-28 04:03	NDMC 0212								42		2002	42.04	
corpsz rumor vs norm KPKM - 2020-02-13 11:12		colon carsin	colon	recombinant	Trantmont	Calllination	CSE10		45.59	21.62	57.52	41.95	0.24
 colori carcinoma (colori) recombinant ni GF a 	Unconuman	colon carcin	colon	recombinant	Treatment V.	Tasata anti-	CCE1701		20.20	25.45	25.72	41.02	9.24
normal control jumplical cord veloj mechanica		normal control	umbilical cor	mechanical s	reatment vs	. rreatment:Tr	GSET/814	01.24	43.59	26,46	55.75		7.59
EC P32 Tumor VS Norm RPKM123 - 2020-02-14 11	NDMC-0212	a second secology			Others	Carabia Ch. I	CONTRACTOR CRISTING	50.00	42.43	25.45	37.52	41.64	0.00
normai control (small airway epithelium) 3132	HumanDisease	normal control	small airway		Other Comp	SmokingStat	GSE77658.GPL: http://www	50.00	48.99	26.46	39.95	41.35	8.66
etastaticMelanoma mRNA_vs_Normal PMID_204	CI20190116							61.24	44.72		59.25	41.30	

Selected 0 / 14056

Mapping Your Results to OmicSoft Datasets by IPA Analysis Match

	Project Ce	ell & Tissu	le	Datasets		sim	ilar	opposite		
	Expression Analysis - EEC P32 Tumor vs Norm RPKM_1050 - 202 Summary Graphical Summary Pathways Upstream	1-03-30 10:58 上午 Analysis Diseases & Functions Rugu	lator Effects	Networks Lists Analysis Match Molecules					- • ×	
	Evaluate Metadata View As Heatmap View om	parison Customize Table 🔒 🌐	•						۰ و	
	Analysis Name T Project	■ × case.di ■ × case.tar ▼ ×	case.tis 🄳	case.tre T × compa T × compa T × co	ompa T × weblink T ×	CP (z-s ▼ × UR (z-s	▼ × CN (z-s ■ × [DE (z-s T × z-score	■ × _▽ D ▼ ×	
	127- breast carcinoma [breast] human marrow stror HumanDiseas	e breast carcino	breast breast	human marro Treatment 1 vs CellLine:Sampli G	SSE54329.GPL18 https://www.n	23.33	22.36	11.42	12.45	
	129- breast carcinoma [breast] IL-6:siltuximab 27513 HumanDiseas	e breast carcino	breast	IL-6:siltuximab Treatment1 vs CellLine:Sampli G	SE54329.GPL18 https://www.n	20.00	33.17	13.29	8.65	
	101- breast carcinoma [breast] IL-6;siltuximab 2748: HumanDiseas	e breast carcino	breast	IL-6;siltuximab Treatment1 vs CellLine:Sampli G	SE54329.GPL18 https://www.n	41.23	28.28 3	9.95 27.37	7.33	
	•••••••••••••••••••••••••••••••••••••••	east carcino	breast	IL-6;siltuximab Treatment vs CellLine:Sampli G	SSE54329.GPL18 https://www.n		-20.00	-5.00	6.65	
roject		east carcino	breast	Treatment1 vs Dosage:Experi G	SSE28786.GPL93 https://www.n	43.59	24.49 2	9.17 24.31	5.24	
Calant Daniante		east carcino	breast	none CellType1 vs. C SamplingTime: G	SSE54329.GPL18 https://www.n	10.00	10.00 3	5.73 13.93	2.97	
Select Projects		east carcino	breast	IL-6 Treatment vs CellLine:Sampli G	SE54329.GPL18 https://www.n	-18.86	10.00	34.21 -10.77	2.52	
Shared Project	rts	east carcino	breast	IL-6 Treatment vs CellLine:Sampli G	SE54329.GPL18 https://www.n	-11.34	-20.00 3	.90 -6.86	1.81	
		east cancer	breast	ethanol Treatment1 vs Treatment:Tra G	SE64536.GPL57 https://www.n	42.43	22.36 3	0.94 23.93	0.61	
V Libraries		east carcino	breast	IL-6;siltuximab Treatment1 vs CellLine:Sampli G	SE54329.GPL18 https://www.n	20.00	28.28	12.07	-1.05	
Libraries		east carcino	breast	IL-6;siltuximab Treatment vs CellLine:Sampli G	SSE54329.GPL18 https://www.n	-28.40	14.14 -	-9.88	-2.77	
V OmicSoft		east carcino	breast	human marro Treatment vs CellLine:Sampli G	SSE54329.GPL18 https://www.n	-38.38	6.32 -	27.29 -14.84	-2.84	
		east carcino	breast	none Treatment1 vs CellLine:Sampli G	SSE54329.GPL18 https://www.n	-37.42	-24.49 -	23.06 -21.24	-3.66	
> OncoLand		east carcino	breast breast	numan marro Treatment1 vs CellLine:Sampli G	SE54329.GPL18 https://www.n	-38./3	-20.00 -	25.26 -21.00	-6.92	
> DiseaseLan	d		brease	none reduience of a center sumplime e						
> SingleCellL	and	tasets					z-scor	'es		
> Normal Ce	lls and Tissues	ta								
Or filter using wild	d card search									
nclude:	(use * for wild	card)								
[comma-separated	ist]									
xclude:		_								
[comma-separated]	ist]									
	Apply Cance									
Complete Insight										

Image: Provide the prov		Dataset	and	analysi	is sea	arch		ざ 訳 勝基因數	位	
	_	QIAGEN			- 1 -		_			
Image:		File Edit View Window Help					2	Provide Feedback Support Gene Chen Close IPA	_	
							-			
Out Num Image: Stand Stan		Genes and Chemicals Diseases	and Functions	Pathways and Lists Da	tasets and Analyses				Ł	
And walk Construction Construction Image: Construction Cons		Create New lung cancer				Se	arch	Advanced Search	í -	
Normalization Letter solution L										
Control Control <t< td=""><td></td><td>Search Kesults</td><td></td><td></td><td></td><td></td><td></td><td>- X ID -</td><td></td></t<>		Search Kesults						- X ID -		
		Diseases and Functions Datasets and Analyses								
		Search Results								
		Chowing first 5000 results out of 22120 in 19999ms for guess	flung cancerl			<			1	
Twie Type The Type P Second Secon		showing inst 5000 results out of 55129 in 18886011s for query	[lung cancer]			Libraries > Omics	oft > Sir	gleCellLand > SingleCellHumanUmi > Analyses		
Control for the second of t		Folder Types				<u>1870- lung aden</u>	ocarcino	ma (LUAD);lung squamous cell carcinoma (LUSC) [lung] 1869		
		• dataset (17090)								
Production Product		analysis (16031)				Case/Control Di	fference	s .		
Name Control C		VarianLossGain (8)								
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>						Кеу	Case (Control		
Add to comparison Comparison Control Table Contro Table Control Table Control			•••) [cluster	1 0	j:10;11;12;13;14;15;16;17;18;19;2;20;3;4;5;6;7;8;9		
Name Type C Cateon Date cost or dat		Open Add to Comparison Customize Table	Crea	2024/ 2024/ (1/125)	✓ 《 》	clustercelltype	Tcella	lveolar epithelial cell'8 cell'outotoxic T cell'endothelial cell'epithelial cell'fibroblast macrophage mast cell monocyte myeloid cell-NK cell-T cell'unassioned cell		
Open camery stackbing router, Sub-34 00 80 87 Fm Stable stab		Name	Туре		case.diseasesta					
Index concerts second condition State		colon cancer-association - 2024-03-05 03:36 下午	analysis	2024/03/04 23:36:43						
38		colon cancer-association	dataset	2024/03/04 23:33:24		Comparison Co				
3		1294- breast cancer [breast] 1293	analysis	2024/01/12 09:20:15	breast cancer		CD			
3 000000000000000000000000000000000000		263- normal control [bladder;bone;bone marrow;brain;embryoi	analysis	2024/01/12 09:19:07	normal control	cellmarkers	CD.			
39 breakt ancer breakt an		4631- breast cancer [peripheral blood] 4630	analysis	2024/01/12 09:17:53	breast cancer	celitype	g ceil			
$\frac{1}{3}$ $\frac{1}$		4938- breast cancer [breast] 4937	analysis	2024/01/12 09:17:39	breast cancer	comparisoncate	gory Ciu	ster vs Otners		
3 244-normal control (LHC) (Instructure) (Bross) (LHC) (Instructure) (LHC)		5225- breast cancer [breast] 5222	analysis	2024/01/12 09:17:22	breast cancer	disessestate	rast ice	in (cluster) vs others		
415 head to be able to be	3	2446- normal control:nulmonary fibrosis [lung] 2445	analysis	2024/01/12 09:16:59	normal control:r	othnicity	Cal	g ademocarcinoma (LOAD), jung squamous cen carcinoma (LOSC)		
Site normal control [testi] S13analysis2024/01/12 051624normal controlremain mater1240- normal control [testi] ung] 129analysis2024/01/12 05161normal controlplaformnameNGS.Illumina.NextSeq5009180- breast cancer [oresti] s1977analysis2024/01/12 05162breast cancesci sobolicasci sobolica9170- colorectul ages (Colorectun] 8696analysis2024/01/12 05120chroni cobstrusci sobolicasci sobolica9170- colorectul ages (Colorectun] 8696analysis2024/01/12 05120chroni cobstrutissuesci sobolica9170- colorectul ages (Colorectun] 8696analysis2024/01/12 05120colorectal agescolorectal agessci sobolica1- acute myeloid leukemia (LAML) [bone marrow] NA 158analysis2024/01/19 0217.66acute myeloidbreat cancerColorectal agescolorectal ages1- breast cancer [breast] mb node,peripheral blood] 0.4analysis2024/01/19 0217.26breat cancerColorectal agesColorectal ages1- breast cancer [breast] mb node,peripheral blood] N.8analysis2024/01/19 0217.26breat cancerColorectal agesColorectal ages1- breast cancer [breast] mb node,peripheral blood] N.8analysis2024/01/19 0217.26breat cancerColorectal agesColorectal ages1- breast cancer [breast] with adulta blood] N.8analysis2024/01/19 0217.26breat cancerColorectal agesColorectal ages1- breast cancer [breast] with adulta blood] N.8analysis2024/01/19 0217.26breat cancercase call	-0	6615- hepatocellular carcinoma (LIHC):intrahepatic cholangiocar	analysis	2024/01/12 09:16:30	hepatocellular ca	gender	for			
1240-normal control [fetal lung] 1239 analysis 2024/01/12 08:163 normal control Instance 318-breat cancer [controc thyttick] s197 analysis 2024/01/12 08:16.00 threat cancer snokingstatus ex-smokingstatus 937-colorectal cancer [colornectum] 9899 analysis 2024/01/12 08:10.20 colorectal cancer issue ws/smokingstatus ex-smokingstatus 1- acute myeloid leukemis (LAML) [bone marrow] NA 133 analysis 2024/01/12 08:10.30 colorectal cancer issue ws/smokingstatus ex-smokingstatus 1- acute myeloid leukemis (LAML) [bone marrow] NA 133 analysis 2024/01/02 08:10.30 breast cancer breast		314- normal control [testis] 313	analysis	2024/01/12 09:16:24	normal control	organism	hur	ane_iniare		
918- breast cancer [breast] 9377 analysis 2024/01/12 09:15:24 breast cancer cancer cancer breast cancer cancer cancer breast cancer cancer breast cancer cancer cancer cancer breast cancer		1240- normal control [fetal lung] 1239	analysis	2024/01/12 09:16:13	normal control	platformname	NG	Sulliving NextSeq500		
4042- chronic obstructive pulmonary disease (COPD); disease co. analysis 2024/01/12 09:14:00 chronic obstructive funsionality 8970- colorectal cancer (colornetum) 9999 analysis 2024/01/12 08:40:15 colorectal cancer funsionality funsionality funsionality 9975- colorectal cancer (colornetum) 9974 analysis 2024/01/09 02:17:05 acute myeloid leukemia (LAML) (bone marrow) NA 168 analysis 2024/01/09 02:16:46 acute myeloid leukemia (LAML) (bone marrow) NA 213 analysis 2024/01/09 02:16:46 acute myeloid leukemia (LAML) (bone marrow) NA 213 analysis 2024/01/09 02:12:46 acute myeloid leukemia (LAML) (bone marrow) NA 213 analysis 2024/01/09 02:12:49 breast cancer funsionality 2023/01/09 02:12:49 breast cancer case. cellmarkers CD235A- 1- breast cancer (breast) estradiol; ethanol 0 analysis 2024/01/09 02:12:57 breast cancer case. cellmarkers CD235A- 1- breast cancinoma (breast) estradiol; ethanol 1 analysis 2024/01/09 02:12:57 breast cancinoma case. clutter 1 1- breast cancinoma (breast) estradiol; ethanol 1 analysis 2024/01/09 02:12:58 kidney heat cell case. clutter 1 1- breast cancinoma (breast) estradiol; ethanol 2 <td< td=""><td></td><td>3918- breast cancer [breast] 3917</td><td>analysis</td><td>2024/01/12 09:15:24</td><td>breast cancer</td><td>smokingstatus</td><td>ex-</td><td>Sinder NA</td><td></td></td<>		3918- breast cancer [breast] 3917	analysis	2024/01/12 09:15:24	breast cancer	smokingstatus	ex-	Sinder NA		
8970- colorectal cancer [colonectum] 8969 analysis 2024/01/2 08-025 colorectal cancer 975- colorectal cancer [colonemarrow] NA 168 analysis 2024/01/9 02:17:06 acute myeloi le lukemia (LAML) [bone marrow] NA 213 analysis 2024/01/9 02:17:06 acute myeloi le lukemia (LAML) [bone marrow] NA 213 analysis 2024/01/9 02:17:06 acute myeloi le lukemia (LAML) [bone marrow] NA 213 analysis 2024/01/9 02:12:08 breast cancer All Experiment Metadatatatatatatatatatatatatatatatatatat		4042- chronic obstructive pulmonary disease (COPD);disease co	analysis	2024/01/12 09:14:00	chronic obstruct	tissue	lun			
8975 - colorectal cancer [colormetum] 8974 analysis 2024/01/12 08:40:15 colormetal cancer 1 - acute myeloid leukemia (LAML) [bone marrow] NA 188 analysis 2024/01/09 02:15:64 acute myeloid leukemia (LAML) [bone marrow] NA 213 analysis 2024/01/09 02:15:64 acute myeloid leukemia (LAML) [bone marrow] NA 213 analysis 2024/01/09 02:15:03 breast cancer 1 - breast cancer [breast], mph node,peripheral blood] analysis 2024/01/09 02:12:49 breast cancer case.cellmarkers CD235A- 1 - breast cancer [peripheral blood] NA 8 analysis 2024/01/09 02:12:27 breast cancer case.cellmarkers CD235A- 1 - breast cancing [breast] estradiolethanol 0 analysis 2024/01/09 02:12:27 breast cancinom case.cellmarkers CD235A- 1 - breast cancing [breast] estradiolethanol 4 analysis 2024/01/09 02:12:57 breast cancinom case.cluster cellpype I detto case.cluster cellpype 1 - breast cancing [breast] estradiolethanol 4 analysis 2024/01/09 02:07:58 bidiney clear cell case.cluster cellpype T cell 1 - ichtome clear cell sarcoma (CSK) [cidney] NA 4 analysis 2024/01/09 02:07:48 kidney habbidi case.dellore cell sarcoma (LUAD);lung squamous cell carcinoma (LUAD);lung squamous cell carcinoma (LU		8970- colorectal cancer [colonrectum] 8969	analysis	2024/01/12 08:40:25	colorectal cancer	tnmstage	pN	s irT1a;pN0;pT2a;pN1;pT1b;pNX;pT2a		
I - acute myeloid leukemia (LAML) (bone marrow) NA 188 analysis 2024/01/09 02:17:06 acute myeloid leukemia (LAML) (bone marrow) NA 213 analysis 2024/01/09 02:18:03 breast cancer I - breast cancer (breast) fload node; peripheral blood) 0 analysis 2024/01/09 02:12:07 breast cancer I - breast cancer (breast) 68 analysis 2024/01/09 02:12:07 breast cancer I - breast cancer (prepheral blood) NA 8 analysis 2024/01/09 02:12:07 breast cancer I - breast cancer (peripheral blood) NA 8 analysis 2024/01/09 02:12:07 breast cancer I - breast cancer (peripheral blood) NA 8 analysis 2024/01/09 02:12:07 breast cancer I - breast cancer (prepheral blood) NA 8 analysis 2024/01/09 02:12:07 breast cancer I - breast cancer (prepheral blood) NA 8 analysis 2024/01/09 02:12:0 breast cancer I - breast cancer (peripheral blood) NA 8 analysis 2024/01/09 02:12:0 breast cancer I - breast cancer (peripheral blood) NA 8 analysis 2024/01/09 02:12:0 breast cancer I - breast cancer (peripheral blood) NA 8 analysis 2024/01/09 02:12:0 breast cancer I - germ cell cancer (covary) NA 4 analysis 2024/01/09 02:07:0 germ cell cancer I - kidney chacer (Lidney) Transfection_BAF47 442 analysis 2024/01/09 02:07:18 kidney chacer I - kidney nabodic cancer (kidney) Transfection_BAF47 442 analysis 2024/01/09 02:07:18 kidney chacer I - kidney nabodic cancer (kidney) Transfection_BAF47 442 analysis 2024/01/09 02:07:18 kidney chacer I - kidney chacer (kidney) Transfection_BAF47 442 analysis 2024/01/09 02:07:18 kidney chacer I - endometrial cancer, endometrial squamous cell carcinoma, analysis 2024/01/09 02:02:18 kidney chacer I - endometrial cancer, endometrial squamous cell carcinoma, analysis 2024/01/09 02:02:18 kidney chacer I - endometrial cancer, endometrial squamous cell carcinoma, analysis 2024/01/09 02:02:18 kidney chacer I - endometrial cancer, endometrial squamous cell carcinoma, analysis 2024/01/09 02:02:18 kidney chacer I - endometrial cancer, endometrial squamous cell carcinoma, analysis 2024/01/09 02:02:18 kidney chacer I - endomet		8975- colorectal cancer [colonrectum] 8974	analysis	2024/01/12 08:40:15	colorectal cancer					
1- acute myeloid lackemia (LAML) (bone marrow) NA 213 analysis 2024/01/09 02:16:46 acute myeloid lackemia (LAML) (bone marrow) NA 213 analysis 2024/01/09 02:16:46 breast cancer 1- breast cancer (breast) fas6 analysis 2024/01/09 02:12:03 breast cancer Case.cellmarkers CD23SA- 1- breast cancer (breast) fas6 analysis 2024/01/09 02:12:03 breast cancer case.celltype lung cell 1- breast cancer (breast) estradiol;ethanol 0 analysis 2024/01/09 02:12:05 breast cancer case.cluster 1 1- breast cancer (breast) estradiol;ethanol 0 analysis 2024/01/09 02:12:05 breast cancer case.cluster 1 1- breast cancer (breast) HA analysis 2024/01/09 02:05:0 breast cancer case.cluster 1 1- breast cancer (breast) NA 4 analysis 2024/01/09 02:07:05 breast cancer case.deltsease Lung adenocarcinoma (LUAD);lung squamous cell carcinoma (LUAD);lung squamous cell		1- acute myeloid leukemia (LAML) [bone marrow] NA 168	analysis	2024/01/09 02:17:06	acute myeloid le					
1- breast cancer [breast],mph node;peripheral blood] 0analysis2024/01/09 02:13:03breast cancer1- breast cancer [breast] 68analysis2024/01/09 02:12:49breast cancercase.cellmarkersCD235A-1- breast cancinoma [breast] estradio];ethanol 0analysis2024/01/09 02:12:21breast cancinomacase.cellmarkersCD235A-1- breast cancinoma [breast] estradio];ethanol 0analysis2024/01/09 02:12:21breast cancinomacase.cellmarkersCD235A-1- breast cancinoma [breast] estradio];ethanol 0analysis2024/01/09 02:12:21breast cancinomacase.cellmarkersTell1- breast cancinoma [breast] estradio];ethanol 4analysis2024/01/09 02:12:05breast cancinomacase.cellstypeTell1- germ cell cancer [ovary] NA 4analysis2024/01/09 02:07:05kidney clear cell cancercase.cellstypeCaucasian1- kidney rlabdoid cancer [kidney] Transfection_BAF47 442analysis2024/01/09 02:07:04kidney rlabdoidcase.genderfemale;male1- childhood acute [winphocytic leukemia [hematopoietic tissue]analysis2024/01/09 02:07:04kidney otacecase.samplematerialcryopreserved cells;MACS depleted cells;surgical resection1- endometrial cancer,endometrial squamous cell cancinoma;vuaanalysis2024/01/09 02:07:04endometrial case.smplematerialcryopreserved cells;MACS depleted cells;surgical resection1- childhood acute [winphocytic leukemia [hematopoietic tissue]analysis2024/01/09 02:07:04endometrial case.smplematerialcryopreserved cells;MACS depleted cells;surgical resecti		1- acute myeloid leukemia (LAML) [bone marrow] NA 213	analysis	2024/01/09 02:16:46	acute myeloid le	All Experiment N	/letadata	1 1		
In breast cancer [breast] 68analysis2024/01/09 02:12:37breast cancercosecultationsCorporations1- breast cancer [peripheral blood] NA 8analysis2024/01/09 02:12:21breast cancerlung cell1- breast carcinoma [breast] estradio];ethanol 0analysis2024/01/09 02:12:20breast carcinomacase.celltype11- breast carcinoma [breast] estradio];ethanol 4analysis2024/01/09 02:12:05breast carcinomacase.cluster11- gern cell cancer [ovary] NA 4analysis2024/01/09 02:07:58kidney clear cellcase.clustercelltypeT cell1- kidney clear cell sarcoma (CCSK) [kidney] NA 14analysis2024/01/09 02:07:58kidney clear cellcase.ethnicityCase.ethnicity1- kidney rhabdoid cancer [kidney] Transfection_BAF47 442analysis2024/01/09 02:02:10kidney rhabdoidcase.genderfemale;male1- childhood acute lymphocytic leukemia [hematopoietic tissue]analysis2024/01/09 02:02:10childhood acutecase.samplematerialcryopreserved cells;MACS depleted cells;surgical resection1- endometrial squamous cell carcinoma;veanalysis2024/01/09 02:01:04endometrial case.samplematerialcryopreserved cells;MACS depleted cells;surgical resection1- endometrial squamous cell carcinoma;veanalysis2024/01/09 02:01:04endometrial case.samplematerialcryopreserved cells;MACS depleted cells;surgical resection1- endometrial squamous cell carcinoma;veanalysis2024/01/09 02:01:04endometrial case.samplematerialcryopreserved cells;MACS depleted cells;surgical		1- breast cancer [breast;lymph node;peripheral blood] 0	analysis	2024/01/09 02:13:03	breast cancer	casa callmarkars		CD2354		
In breast carcin (per (per (per (per (per (per (per (per		1- breast cancer [breast] 68	analysis	2024/01/09 02:12:49	breast cancer	case celltype				
1 - breast carcinome (breast) estradio), ethanolog, ethan		1- breast carrier (peripheral blood) NA o	analysis	2024/01/09 02:12:57	breast carcinom	case cluster		1		
1- germ cell cancer [ovary] NA 4analysis2024/01/09 02:09:17germ cell cancercase.diseasestatelung adenocarcinoma (LUAD);lung squamous cell carcinoma (LUAC)1- kidney clear cell sarcoma (CCSK) [kidney] NA 14analysis2024/01/09 02:07:58kidney clear cellcase.ethnicityCaucasian1- kidney rhabdoid cancer [kidney] Transfettion_BAF47 442analysis2024/01/09 02:07:40kidney rhabdoidcase.genderfemale;male1- childhood acute lymphocytic leukemia [hematopoietic tissue]analysis2024/01/09 02:02:21childhood acutecase.samplematerialcryopreserved cells;MACS depleted cells;surgical resection1- endometrial cancer;endometrial squamous cell carcinoma; ovaanalysis2024/01/09 02:01:04endometrial cancer, samplematerialcryopreserved cells;MACS depleted cells;surgical resection		1- breast carcinoma [breast] estradiol;ethanol 4	analysis	2024/01/09 02:12:05	breast carcinoma	case.clustercellty	pe	T cell		
1- kidney clear cell sarcoma (CCSK) [kidney] NA 14 analysis 2024/01/09 02:07:58 kidney clear cell case.ethnicity Caucasian 1- kidney rhabdoid cancer [kidney] Transfection_BAF47 442 analysis 2024/01/09 02:07:40 kidney rhabdoid case.gender female;male 1- childhood acute lymphocytic leukemia [hematopoietic tissue] analysis 2024/01/09 02:02:21 childhood acute case.samplematerial cryopreserved cells;MACS depleted cells;surgical resection 1- endometrial cancer;endometrial squamous cell carcinoma;ova analysis 2024/01/09 02:01:04 endometrial can case.smokingstatus ex-smokingstatus		1- germ cell cancer [ovary] NA 4	analysis	2024/01/09 02:09:17	germ cell cancer	case.diseasestat		lung adenocarcinoma (LUAD):lung squamous cell carcinoma (LUSC)		
1- kidney rhabdoid cancer [kidney] Transfection_BAF47 442 analysis 2024/01/09 02:07:40 kidney rhabdoid case.gender female;male 1- childhood acute lymphocytic leukemia [hematopoietic tissue] analysis 2024/01/09 02:02:21 childhood acute case.samplematerial cryopreserved cells;MACS depleted cells;surgical resection 1- endometrial cancer;endometrial squamous cell carcinoma;ova analysis 2024/01/09 02:01:04 endometrial cancer;enkingstatus ex-smokingstatus		1- kidney clear cell sarcoma (CCSK) [kidney] NA 14	analysis	2024/01/09 02:07:58	kidney clear cell	case.ethnicity		Caucasian		
1- childhood acute lymphocytic leukemia [hematopoietic tissue] analysis 2024/01/09 02:02:21 childhood acute case.samplematerial cryopreserved cells;MACS depleted cells;surgical resection 1- endometrial cancer;endometrial squamous cell carcinoma;ova analysis 2024/01/09 02:01:04 endometrial cancer;endometrial cancer;endometrial squamous cell carcinoma;ova analysis 2024/01/09 02:01:04 endometrial cancer;endometrial cancer;endo		1- kidney rhabdoid cancer [kidney] Transfection_BAF47 442	analysis	2024/01/09 02:07:40	kidney rhabdoid	case.gender		female:male		
1- endometrial cancer;endometrial squamous cell carcinoma;ova analysis 2024/01/09 02:01:04 endometrial can case.smokingstatus ex-smoker;NA		1- childhood acute lymphocytic leukemia [hematopoietic tissue]	. analysis	2024/01/09 02:02:21	childhood acute	case.samplemat	erial	cryopreserved cells;MACS depleted cells;surgical resection		
		1- endometrial cancer;endometrial squamous cell carcinoma;ova	. analysis	2024/01/09 02:01:04	endometrial can	case.smokingsta	tus	ex-smoker;NA		

You can also use the repository without your own analysis, just by searching for available analyses of interest.

Graphical summary

31

IPA interpret

AACS

AACS

0.82

-0.04

enzyme

Label gene names of interest in the volcano plot

Dataset

882 genes passed cutoffs (491 down and 391 up)

<u>View Details</u> \rightarrow

Canonical Pathways (1)

Signaling and metabolic pathways that are potentially activated or inhibited in the dataset

Pathway	P-value	Activation z-score	Percentage overlap
Filter	Filter ≤	Filter abs. ≥	Filter ≥
Generic Transcription Pathway	1.60e-39	12.93	41.82
Chromatin organization	7.17e-22	8.91	40.39
Oxidative Phosphorylation	3.77e-13	-3.43	45.28
rRNA processing	1.61e-12	4.38	71.88
Pulmonary Fibrosis Idiopathic Signaling Pathway	1.76e-12	1.86	31.06
Histone Modification Signaling Pathway	5.99e-12	6.93	31.6

Regulator	P-value 🔺	Activation z-score	Percentage overlap
Filter	Filter ≤	Filter abs. ≥	Filter ≥
ELF3-AS1	2.53e-21	-6.45	72.41
NUPR1	5.34e-20	3.11	32.6
TGFB1	2.19e-19	-0.18	32.03
TP53	1.96e-18	2.04	28.01
ARID1A	7.15e-16	-2.07	33.82
PDGF-BB	9.65e-16	4.08	52.75

Diseases and Functions ①

Diseases and biological functions that are predicted to be impacted in the dataset

Disease or Function	P-value	Activation z-score	Percentage overlap
Filter	Filter ≤	Filter abs. ≥	Filter ≥
Nonhematologic malignant neoplasm	2.59e-143	0.07	17.9
Non-hematological solid tumor	4.74e-140	-0.86	17.82
Epithelial neoplasm	7.70e-137	-1.08	17.96
Carcinoma	1.24e-135	-0.74	17.96
Non-melanoma solid tumor	7.26e-134	-0.08	17.82
Tumorigenesis of tissue	2.75e-133	-1.38	17.86

Tox Functions (i)

<u>View Details</u> \rightarrow

<u>View Details</u> \rightarrow

৬

ىل

Toxicity endpoints and phenotypes and their causal associations with genes or proteins in the dataset

<u>View Details</u> \rightarrow

৶

Tox Function	P-value	Activation z-score	Percentage overlap	
Filter	Filter ≤	Filter abs. ≥	Filter ≥	
Liver tumor	1.30e-30		19.01	
Liver carcinoma	7.18e-26		19.11	
Liver cancer	9.73e-26		19.04	
Hepatocellular carcinoma	1.87e-9		19.05	
Ventricular dysfunction	1.01e-6		24.17	
Left ventricular dysfunction	3.00e-6		23.91	

View Details \rightarrow

.↓.

Similarities and Differences to OmicSoft Analyses (i)

Analyses with the most significant matching (similarities, on the right) or anti-matching (differences, on the left) to your dataset. The table shows metadata statistically over-represented among the analyses in the old.

Sample to Insight

IPA interpret canonical pathway bar chart (2025 spring release)

Figure Legend ON

QIAGEN **QIAGEN IPA Interpret**

Table

Want to analyze your own data?	Gene Chen	Logout	

Number next to the bar: -log[P-value]

More filters

X-axis	Sort by		Data Display		
Activation z-score	-log[P-value]	Negative Z	Select Range	Positive Z	T
Z-Score: Positive Negative Zero Neutral or No Prediction		Activ	ation z-score	-	→

RNA.24h / Canonical Pathways

Canonical Pathways

Signaling and metabolic pathways that are potentially activated or inhibited in the dataset

Bar Chart

Table Bar Chart						
Pathway	P-value 🔺	BH P-value	Activation z-score	Percentage overlap	Overlapping molecules	Total pathway size
Filter	Filter ≤	Filter ≤	Filter abs. ≥	Filter ≥	Filter ≥	Filter ≥
Generic Transcription Pathway	1.60e-39	1.95e-36	12.93	41.82	179	428
Chromatin organization	7.17e-22	4.38e-19	8.91	40.39	103	255
Oxidative Phosphorylation	3.77e-13	1.54e-10	-3.43	45.28	48	106
rRNA processing	1.61e-12	4.29e-10	4.38	71.88	23	32
Pulmonary Fibrosis Idiopathic Signaling Pathway	1.76e-12	4.29e-10	1.86	31.06	100	322
Histone Modification Signaling Pathway	5.99e-12	1.22e-9	6.93	31.6	91	288

protein-encoding genes. Figure 1 shows a diagram of the various components involved in cell-specific regulation of Pol-II gene transcription. Core Promoter: Pol II-regulated genes typically have a Core Promoter where Pol II and a variety of general factors bind to specific DNA motifs: i: the TATA box (TATA DNA sequence), which is bound by the 'TATA-binding protein' (TBP). ii: the Initiator motif (INR), where Pol II and certain other core factors bind, is present in many Pol II-regulated genes. iii: the Downstream

(i) ↓

Want to analyze your own data?

Stuart Tugendreich Logout

esting potential. Phase 0 is the rapid depolarisation phase

pens the closed, fast Na+ channels, causing a

s causes depolarisation of the

tial change and

Highlight nodes of interest in a canonical pathway or network

Dataset molecules

2) Highlights the corresponding node(s) even if inside a group or complex

1) Clicking row(s) here

IPA interpret Canonical Pathway Bubble Plot (2025 summer release)

IPA interpret

In canonical pathway, could show each molecules overlap in this pathway

Dataset molecules for Cerebral Malformation Signaling Pathway

Dataset molecules for	Itaset molecules for Cerebral Malformation Signaling Pathway													
Showing all 19 molecules														
Name 🔺	Entrez Gene	Identifier	Expr p-value	Expr Log Ratio	Expected	Molecule Type	Location							
Filter	Filter Filter		Filter ≤	Filter abs. ≥	Select	Select 💌	Select 🔹							
AKT1	AKT serine/threonine kinase 1	AKT1	1.44e-4	-0.63	Up	kinase	Cytoplasm							
AKT2	AKT serine/threonine kinase 2	AKT2	7.32e-12	-4.42	Up	kinase	Cytoplasm							
AKT3	AKT serine/threonine kinase 3	AKT3	3.05e-3	-0.82	Up	kinase	Cytoplasm							
CCM2	CCM2 scaffold protein	CCM2	6.84e-3	-4.77	Down	other	Cytoplasm							
CDKN1A	cyclin dependent kinase inhibitor 1A	CDKN1A	0.05	-4.64	Up	kinase	Nucleus							
CKS1B	CDC28 protein kinase regulatory subunit 1B	CKS1B	2.95e-4	-5.17	Down	kinase	Unknown							
CTNNA1	catenin alpha 1	CTNNA1	1.40e-21	-0.62	Down	other	Plasma Membrane							
CTNNB1	catenin beta 1	CTNNB1	1.30e-25	-1.25	Down Canonical_Pathways_I	Dataset_Molecules	Nucleus							
F2	coagulation factor II, thrombin	F2	2.15e-19	0.87	Up	peptidase	Extracellular Space							
F5	coagulation factor V	F5	6.71e-4	0.86	Down	other	Extracellular Space							

Powered by QIAGEN Digital Insights

QIAGEN IPA® Interpret is for molecular biology research use only and not intended for the diagnosis, prevention, or treatment of disease. Use of this content, analyses and / or results herein are subject to the QIAGEN Digital Insights User Agreement

Privacy Policy Trademarks & Disclaimers Terms & Conditions

QIAGEN IPA Interpret

Upstream Regulators

Potentially activated or inhibited upstream molecules driving differential changes in the dataset

Regulator	Molecule Type	P-value	Activation z-score	Percentage overlap	Overlapping molecules	Total known targets
Filter	Select items	▼ Filter <	Filter abs. >	Filter >	Filter >	Filter >
FIRRE	other	2.52e-20	6.08	40.22	37	92
PTPRR	phosphatase	1.42e-16	-5.91	33.98	35	103
miR-3648 (miRNAs w/seed GCCGCGG)	mature microRNA	3.56e-10	-5.29	25.45	28	110
TP73	transcription regulator	1.91e-8	4.88	13.29	69	519
NTRK1	kinase	6.59e-8	5.98	15.21	47	309
COLQ	other	3.26e-7	-1.80	26.09	18	69

Upstream regulator representation

FIRRE Figure Legend

FIRRE network

t

Al suggests the following synopsis of this network:

Top Biological Themes in the given Biological Network

Gene Regulation and Expression

The relationships suggest that FIRRE (Functional Intergenic Repeating RNA Element) is a significant regulator of various genes, affecting their expression. The broad range of genes influenced by FIRRE indicates a complex regulatory role.

Metabolic Pathways

Several of the genes such as ACADS (Acyl-CoA Dehydrogenase) and PGLS (6-Phosphogluconolactonase) are involved in metabolic processes. The increase of these genes implies FIRRE may play a role in regulating metabolic pathways.

Signal Transduction

Genes like MAP2K2 (Mitogen-Activated Protein Kinase Kinase 2) and CSK (C-Src Tyrosine Kinase) are key components of signal transduction pathways. FIRRE's impact on their activity suggests a role in cellular response mechanisms.

Immune Response

CSF1 (Colony Stimulating Factor 1) and NOS2 (Nitric Oxide Synthase 2) are crucial for immune system

and a second and and an analysis of

OIAGEN

Kristin O'Malley Logout

訊聯基

é

Want to analyze your own data?

IPA interpret

What's new in the QIAGEN® Ingenuity Pathway Analysis Summer Release (2025) 🏹 訊聯基因數位

IPA interpret in Upstream Regulator

If we selected a upstream regulator, there was show molecules which affected by FGF7

.

Dataset molecules for TP53

Showing all **72** molecules

Name 🔺	Entrez Gene	Identifier	Expr p-value	Expr Log Ratio	Expected	Molecule Type	Location
Filter	Filter	Filter	Filter ≤	Filter abs. ≥	Select 💌	Select	Select 💌
AKT1	AKT serine/threonine kinase 1	AKT1	1.44e-4	-0.63	Up	kinase	Cytoplasm
APOBEC3C	apolipoprotein B mRNA editing enzyme catalytic subunit 3C	APOBEC3C	7.69e-20	-0.90		enzyme	Unknown
AURKB	aurora kinase B	AURKB	1.62e-22	-6.69	Down	kinase	Nucleus
BRCA1	BRCA1 DNA repair associated	BRCA1	0.04	0.97	Down	transcription regulator	Nucleus
CASP1	caspase 1	CASP1	2.00e-30	-7.39	Up	peptidase	Cytoplasm
CAV2	caveolin 2	CAV2	4.84e-3	-0.83	Up	other	Plasma Membrane
CCN2	cellular communication network factor 2	CCN2	1.41e-11	-6.04		growth factor	Extracellular Space
CCNB1	cyclin B1	CCNB1	0.04	-4.32	Down	enzyme	Cytoplasm
CD82	CD82 molecule	CD82	1.13e-4	-6.00		other	Plasma Membrane
CDK4	cyclin dependent kinase 4	CDK4	2.00e-30	-9.17		kinase	Nucleus

Powered by QIAGEN Digital Insights

QIAGEN IPA® Interpret is for molecular biology research use only and not intended for the diagnosis, prevention, or treatment of disease. Use of this content, analyses and / or results herein are subject to the QIAGEN Digital Insights User Agreement

Privacy Policy Trademarks & Disclaimers Terms & Conditions

IPA interpret in Disease and Function

🌐 Table

In disease and functional, It also could show Bubble Chart

Diseases and Functions

Diseases and biological processes predicted to be impacted in the dataset

II. Bar Chart

🕑 Bubble Chart

For Disease and Function We could use more filter to select our interested disease and function

Chart Type Bubble volcano	Activation	Y-axis z-score ▼	-value] 🔹	Bubble size Percentage overlap 👻	Bubble color Activation z-score 👻	Data display Active Filters: Z	Z-Score, P-Value More filters	Figure Legend ON
Z-Score: 🦲	Positive Negative	Zero Neutral	or No Prediction	Percentage overlap	• 25 • 50	100	More Data Filters	1
40				•			Filter by Gene(s)	cclude (e.g. ALAS2, IRF;
30 50 05			- -	•			Diseases and Functions Display Search list (Unselect all, then search	to filter results)
10			o -				All Diseases and Functions (2761) > C Embryonic Development (11)	Expand all Collapse all
0 r -7	-6	-3	0 Activation z-score	3	6 7		 Organismal Development (1 Organismal Injury and Abno Cardiovascular Disease (172 Tissue Development (123) 	38) ormalities (670) 2)

Analysis match of Omicsoft analysis

protein.24 / Similarities and Differences to OmicSoft Analyses

Similarities and Differences to OmicSoft Analyses

Analyses with the most significant matching (similarities, on the right) or anti-matching (differences, on the left) to your dataset. The table shows metadata statistically over-represented among the analyses in the plot.

Color the analyses (dots) by Metadata field

 \sim

Cell types

Term	P-value
• colon cell	6.93e-30
pancreatic cell	8.57e-8
mesenchymal stem cell (MSC)	5.28e-7
• lymphoid cell	2.42e-6
• vascular cell	3.05e-6
Iymph node cell	1.19e-5
CD45- cell;CD45+ cell	1.28e-5
• trachea cell	1.36e-4
common monocyte progenitor (cMoP)	1.96e-4
aortic smooth muscle call	1 በንዱን

() ↓

Customize bar charts for image export

protein.24 / Canonical Pathways

Canonical Pathways

(i) ↓

Grow function

Reset

Apply

© 2000-2025 QIAGEN. All rights reserved.

Omicsoft datasets update

OmicSoft datasets

246,776 total datasets from OmicSoft with 15,001 datasets newly added. A new source called NCI Patient-Derived Models has been added in this release derived from this source: <u>https://pdmr.cancer.gov/</u>.

Land	Repository	Datasets Q1 2025	Datasets Q2 2025	Increase
	HumanDisease	38,710	39,036	326
DiseaseLand	MouseDisease	28,784	29,355	571
	RatDisease	10,264	10,269	5
	LINCS	25,880	25,880	
	OncoHuman	24,972	25,262	290
	OncoMouse	1,516	1,516	
Oncol and	TCGA	4,854	4,854	
Oncoland	ENCODE RNA Binding	486	486	
	ClinicalProteomicTumor	2,978	2,978	
	NCBI Patient-Derived Models		552	552
	SingleCellHuman	194	194	
	SingleCellHumanUmi	77,140	81,140	4,000
Single Cell Land	SingleCellHumanHCL	1,469	1,469	
	SingleCellMouse	81	81	
	SingleCellMouseUmi	13,135	22,392	9,257
Normal Cells and Tissues	Human Tissues (GTEx)	1,312	1,312	

Formatting 'omics data before uploading to IPA

			Observatio	on 1	Observation 2						
	А		В	С	D	E					
1	geneid		UCvsNormal.Log2FoldChange	UCvsNormal.pval	52wksVedolizumabvsBaseline.Log2FoldChange	52wksVedolizumabvsBaseline.pval					
2	DDX11L1		-0.1067	0.2878	0.1183	0.1624					
3	WASH7P		-0.1883	0.0097	0.3063	0.0006					
4	FAM138F		-0.0761	0.4699	0.2466	0.0191					
5	OR4F5		0.1474	0.5311	0.1713	0.2913					
6	LOC729737		0.4789	0.0017	0.029	0.8331					
7	LOC100133331		0.4789	0.0017	0.029	0.8331					
8	LOC100132062		0.4789	0.0017	0.029	0.8331					
9	OR4F29		0.2495	0.2389	0.2181	0.1887					
10	JA429831		0.1215	0.3338	0.2556	0.0004					
10	10 JA429831 0.1215		0.1215	0.3338	0.2556	0.0004					

Analyte identifier REQUIRED to explore enrichment

RNA examples: Gene symbols, array identifiers from Affymetrix, Ensembl, etc.

Protein examples: UniProt, GenPept, Gene symbols, Ensembl. etc.

Metabolite examples: KEGG, CAS registry number, etc. *add multiple columns of ids to ensure best mapping

Change values needed to calculate activity predictions

Change value examples: fold changes, ratios, etc.

Significance values: P-values *optional but recommended to enable filtering for significance

Accepted file formats:

- ✓ .txt (tab-delimited text files)
- ✓ .xls, .xlsx, .csv (Excel tables
- ✓ .diff (Cuffdiff output

Multiple comparisons or observations may be uploaded in one file

	IDs (required)				 Ratio, fold change, etc. (recommended)
	Ţ		•	•	 Significance (optional)
A	А	В	С	D	Common protein IDs
1	Proteins	Fold change	P_value	P_value_adjust	• Ensembl
2	P00738	0.592740341	0.000671209	0.016736513	LIISEIIIDI
3	P01008	0.25826353	0.000155027	0.006454004	Gene symbols (Entrez or HUGO)
4	P01011	0.47378079	0.000628734	0.016577608	
5	P04003	0.312321917	2.2507E-05	0.001618456	 GenPept and GenBank
6	P06681	0.272046102	0.001374078	0.027869114	
7	P05155	0.429462469	4.19294E-05	0.002551241	 International Protein Index
8	P02748	0.580232999	0.002252137	0.038734209	
9	P02763	0.555940063	0.00014192	0.006236575	 UniProt and SwissProt
10	Q14520	0.368464274	9.75518E-05	0.004786156	
11	Q08380	0.536007179	0.000258392	0.009290371	
12	Q9BXR6	0.332814513	0.00075662	0.01813594	
13	P03951	0.306633696	0.000594476	0.016236342	UniProt ID conversion tool:
14	P08185	0.304349939	1.12204E-05	0.000914984	
15	P05090	0.302847519	0.000817844	0.018730825	 <u>https://www.uniprot.org/mapping/</u>

ID	s (require	ed)				 Ratio, fold change, etc. (recommended
	Ţ			•	•	 Significance (optional)
4	А	В	С	D	E	Common protein IDs
1	ID	Symbol	Phospho Fold Change	Phospho p-value	Phospho Site	
2	IPI00137139	1700003H04Rik	-1.271	0.221	_M(ox)ET(ph)LGEK_	
3	IPI00224491	2900026A02Rik	-1.244	0.25	_RQS(ph)LYENQA_	Ensembl
4	IPI00224491	2900026A02Rik	-1.404	0.156	_SEECS(ph)PQWLK_	
5	IPI00652957	4930594M22Rik	-5.729	5.47E-09	_MFKSS(ph)PR_	 Gene symbols (Entrez or HUGO)
6	IPI00137111	4933402E13Rik	2.196	0.000423	_AWALNDS(ph)ANT(ph)SPNAWFVER_	
7	IPI00137111	4933402E13Rik	2.196	0.000423	_AWALNDS(ph)ANT(ph)SPNAWFVER_	ConPort and ConBank
8	IPI00137111	4933402E13Rik	2.196	0.000423	_AWALNDS(ph)ANT(ph)SPNAWFVER_	
9	IPI00654190	4933431E20Rik	-1.184	0.304	_VGGLS(ph)PR_	
10	IPI00654176	4933439C10Rik	-1.097	0.431	_SPHLSGS(ph)LPR_	 International Protein Index
11	IPI00225598	A430057M04Rik	1.079	0.299	_ALPT(ph)EPR_	
12	IPI00227449	A730008H23Rik	-1.448	0.133	_GM(ox)TLQWLIS(ph)PVK_	 UniProt and SwissProt
13	IPI00311509	AAAS	-1.085	0.37	_ITHIPLYFVNAQFPRFS(ph)PVLGR_	
-14	IPI00458612	AAK1	1.07	0.311	_VGSLT(ph)PPSS(ph)PKTQR_	
15	IPI00458612	AAK1	1.07	0.311	_VGSLT(ph)PPSS(ph)PKTQR_	
16	IPI00458612	AAK1	1.057	0.332	AGQTQPNPGILPIQPALT(ph)PR	UniDrot ID conversion tool
			1			

Observation 1

<u>https://www.uniprot.org/mapping/</u>

	Multiple	ID colum	ins		Ratio, foid change, etc. (recommended)								
	ſ	•			(optional)	ļ	Significar	Significance (optional)					
A	А	В	С	D	E	F	G	Н					
1	Pubchem	Kegg	HMDB	CAS	Metabolites	Fold change	P_value	P_value_adjust					
2					(2 or 3)-decenoate (10:1n7 or n8)	1.212936133	4.44028E-05	0.000585189					
3	6443013	C14762	HMDB0004667	29623-28-7	13-HODE + 9-HODE	0.584109411	0.003698077	0.016919182					
4	10111	C02294	HMDB01522	471-29-4	1-methylguanidine	1.219937764	0.015399637	0.049446834					
5	5462190	C15606	HMDB0012134	746507-19-7	2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA)*	1.566518315	0.002802172	0.013670263					
6	80283	C02356	HMDB00452	1492-24-6	2-aminobutyrate	0.633800292	0.011016709	0.038805594					
7	10796774		HMDB00317	488-15-3	2-hydroxy-3-methylvalerate	0.997343835	0.006172648	0.024774766					
8	11427		HMDB37115	120-91-2	2-hydroxy-4-(methylthio)butanoic acid	1.294720456	0.000305912	0.002622524					

Observation 1

Common metabolite IDs

- CAS registry number
- Human Metabolome Database
- KEGG
- PubChem CID

Metabolite ID conversion tools:

- <u>https://biodbnet-abcc.ncifcrf.gov/db/db2db.php</u>
- https://cts.fiehnlab.ucdavis.edu/batch
- http://csbg.cnb.csic.es/mbrole2/conversion.php

Multi-omics Case Study

Cell Reports Medicine

Article

Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long COVID

Graphical abstract

Authors

Kaiming Wang, Mobin Khoramjoo, Karthik Srinivasan, ..., David S. Wishart, Vinay Prasad, Gavin Y. Oudit

Correspondence

gavin.oudit@ualberta.ca

In brief

Wang et al. conduct a comprehensive multi-omics analysis to identify pathways differentially altered during acute SARS-CoV-2 infection and convalescence. This study provides clues into the heterogeneity of the post-acute COVID-19 symptoms and unveils potential therapeutic targets for long COVID.

Figure 3. Pathways dysregulated during acute infection and convalescence

(A) Enriched Gene Ontology (GO) terms of differentially expressed proteins and cytokines on Metascape for acute COVID-19 compared to healthy controls, colored based on p values.

(B) Top regulatory effects of molecules and functions in acute COVID-19 based on Ingenuity Pathway Analysis (IPA).

(C) Pathways associated with metabolic alterations in acute COVID-19 compared to healthy controls. Pathway impact indicates the sum of importance of the altered metabolites in the impacted pathway based on pathway topology; the –log(P) are test statistics for quantitative pathway enrichment analysis based on concentration differences between groups. Notable impacted pathways are above the dashed lines (impact >0.2 and –log(P) > 20). (D) Enriched GO terms of differentially expressed proteins and cytokines on Metascape for convalescence phase compared to healthy controls, colored based on

p values. (E) Top regulatory effects of molecules and functions during convalescence based on Ingenuity Pathway Analysis (IPA). (F) Pathways associated with metabolic alterations during convalescence compared to healthy controls.

Highlights

- Sequential multi-omics profiling of plasma during acute infection and convalescence
- Inflammation, platelet degranulation, and metabolic perturbations at convalescence
- Three distinct disease phenotypes based on unsupervised clustering of omics profile

San

Upload dataset protein

		Ac	ute vs Co	ntrol		Covlanvance vs Control								
	А	В	С	D	E	F	G	ПН	1	J	К	L	М	N
1	Identifier	Log2FoldC	LOG10_A	Adj_P_val	Type_Cov	Log2FoldC	LOG10_A	Adj_P_val	Log2FoldC	LOG10_A	Adj_P_val	Log2FoldC	LOG10_A	Adj_P_valu
2	CCL22	-0.59255	2.14246	0.007203	cytokine	0.87785	8.10959	7.77E-09	NA	NA	NA	NA	NA	NA
3	IL15	0.62343	10.17656	6.66E-11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4	IL27	0.75691	1.56589	0.027171	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
5	IFNB2	NA	NA	NA	cytokine	-2.8755	8.31512	4.84E-09	NA	NA	NA	NA	NA	NA
6	CCL4	0.91855	2.1882	0.006483	NA	NA	NA	NA	1.1692	6.71627	1.92E-07	1.1692	6.71627	1.92E-07
7	CD40LG	3.2722	18.03133	9.30E-19	NA	NA	NA	NA	3.7221	38.84747	1.42E-39	3.7221	38.84747	1.42E-39
8	CXCL1	2.6265	16.81206	1.54E-17	NA	NA	NA	NA	2.962	22.58921	2.58E-23	2.962	22.58921	2.58E-23
9	CXCL10	3.9462	4.00972	9.78E-05	cytokine	-3.4598	8.31512	4.84E-09	NA	NA	NA	NA	NA	NA
10	CXCL8	1.2064	8.1271	7.46E-09	NA	NA	NA	NA	1.7062	11.15951	6.93E-12	1.7062	11.15951	6.93E-12
11	CXCL9	0.72302	1.59385	0.025477	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
12	EGF	3.81	19.0099	9.77E-20	cytokine	0.89458	3.8323	0.000147	4.7046	28.41106	3.88E-29	4.7046	28.41106	3.88E-29
13	FGF2	1.2964	6 .99136	1.02E-07	NA	NA	NA	NA	1.4117	9.37633	4.20E-10	1.4117	9.37633	4.20E-10
14	FLT3LG	0.78975	3.87034	0.000135	NA	NA	NA	NA	0.97072	6.32806	4.70E-07	0.97072	6.32806	4.70E-07
15	HMDB000	1.6541	9.60216	2.50E-10	Metabolite	-1.2633	14.89963	1.26E-15	NA	NA	NA	NA	NA	NA
16	HMDB000	-0.62984	7.39823	4.00E-08	NA	NA	NA	NA	-0.62157	7.34581	4.51E-08	-0.62157	7.34581	4.51E-08
17	HMDB000	NA	NA	NA	NA	NA	NA	NA	3.1319	2.55156	0.002808	3.1319	2.55156	0.002808
18	HMDB000	0.8291	5.62302	2.38E-06	Metabolite	-0.80725	11.22915	5.90E-12	NA	NA	NA	NA	NA	NA
19	HMDB000	0.64911	3.29354	0.000509	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
20	HMDB000	1.437	4.5433	2.86E-05	NA	NA	NA	NA	0.87763	3.97127	0.000107	0.87763	3.97127	0.000107

Sample to Insight

Upload dataset

		Dataset Upload - Edit Datase	et: protein_cytokine_r	netabolite	e_result										- 0
Create	New	1. Select File Format:	Flexibl	e Format		~ 0									
		2. Contains Column Header	: OYes	O No											
		3. Select Identifier Type:	Please	assign at l	east one col	umn below as "ID", ar	nd assign the identifier type(s)).							
			Assign	additional	l columns as	ID to improve mappi	ng coverage if desired.								
		4. Array platform used for ex	xperiments: Not sp	ecified/an	pplicable	✓ Select relev	vant arrav platform as a refer	ence set for data analysis.			-				
		5. Use the dropdown menus	s to specify the colum	nn nam 🚦	💈 Edit O	bservation Nan	nes			×					
Upload d	ataset	Raw Data (286) Datase	et Summary (234)	Metad 1	To label	each observat	ion, select an existir	ng name from the pu	ull-down lists,	an click OK					
		Edit Observation Names	Infer Observa	ations	Ji create	anewiaberb	y typing unectly int	o the observation is	ame neiu. m	en click OK.					
		ID/Observation Name	ID ~	Acu	Edit Ob	servation Nan	nes				/ Cor	nvalesce ∨	Ignore 🗸	Convalesce ∨	recover vs
Ļ		Measurement/Annotation	n 4 types sel… ∨	Ехрі		Observation N	lame				- Exp	or Log Ra 🗸		Expr p-value v	Expr Log Ra
		1	Identifier	Log2l	1.	Observation	1			\sim	Log2	FoldChange_C	LOG10_Adj_p_value	Adj_P_value_CovC	Log2FoldChange_
Choose	your	2	CCL22	-0.592		<u>.</u>	•				94. NA		NA	NA	NA
filo		3	IL15	0.623	2.	Observation	2			~	NA		NA	NA	NA
IIIe		4	IL27 IENIB2	0.756	3	Observation	3								NA
/	×	6	CCL4	0.918	5.	Observation	5				1.169	92	6.71626999999999999	1.92189651824487E-7	1.1692
		7	CD40LG	3.272.	4.	Observation	4			\sim	3.722	2100000000002	38.847470000000001	1.4207903541911401	3.72210000000000
la de la constante de la consta	X	8	CXCL1	2.626							2.962	2000000000002	22.589210000000001	2.5750756964185201	2.962000000000000
		9	CXCL10	3.946	5.	Observation	5			\sim	38. NA	100000000000	NA	NA	NA 1 7061000000000
Edit	Infer	11	CXCL9	0.723	~	ol	<i>c</i>				NA	199999999999999	NA	0.9201196127552104 NA	NA
observation	abaarvatio	12	EGF	3.81	6.	Observation	6			~	99. 4.704	46000000000000	28.4110599999999999	3.88096744739962E	4.70460000000000
UDSEIVALIUTI	observation	13	FGF2	1.296	7	Observation	7				1.411	17	9.3763299999999994	4.20407059387858E	1.4117
name		14	FLT3LG	0.789	·· ·	Observation	'			-	0.970	072000000000000	6.3280599999999998	4.6982919481921798	0.97072000000000
		15	HMD8000008	-0.62							-0.62	15699999999999	NA 7 3458100000000002	NA 4 5101397601705199	-0 6215699999999
	1	17	HMDB0000020	NA					OK	Cancel	3.131	8999999999999999	2.55155999999999998	2.80827736810983E-3	3.13189999999999
		18	HMDB0000023	0.829					UK	curreer	99 <mark>N</mark> A		NA	NA	NA
		19	HMDB0000056	0.649103	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.233340000000000	3.000313040123003311M	11/4	1965	110	NA		NA	NA	NA
	↓	20	HMDB0000064	1.437000	000000000000000000000000000000000000000	4.5433000000000003	2.8622001490511902NA	NA	NA	NA	0.877	763000000000000 17	3.9712700000000001	1.06839045652549E-4	0.8776300000000
	Ţ	22	HMDB0000072	1.375899	999999999999999	10.793340000000001	1.6093851880972901metaboli	te 0.616659999999999	9997.41005	3.8900035709495	898. 1.992	26999999999999999	22,44483	3.5906245835683601	1.992699999999999
Select	Check	23	HMDB0000092	0.662370	00000000000.	5.7616800000000001	1.7310914046974799 NA	NA	NA	NA	NA		NA	NA	NA
voriable ture															
variable type	variable ty	be													

Core analysis

– 🗇 ×

Analyze filter

dataset

Annotated Dataset: protein_cytokine_metabolite_result

Preview Dataset protein_cytokine_metabolite_result Observation: Acute_vs_Control (224) \sim

Mapped IDs (234) Unmapped IDs (51) All IDs (285) Metadata

•	Add To My Path	way Add To My List	Create Dataset Cus	tomize Table			Symbol (S)-2-hydrox	/but (1/3) 🗸 📉 📡
Core analysis	Expr Log Ratio	X Expr p-value	× ID	Flags	X Symbol T X E	Entrez Gene Name 🛛 🗵 Location	X Type(s) X D	rug(s) 🗙
,	1.654	2.50E-10	HMDB000008	3	(S)-2-hydroxybutyric acid	Other	chemical - endogenous ma	5
	0.829	2.38E-06	HMDB0000023		(S)-3-hydroxy-2-methylpropa	Other	chemical - endogenous ma	
			HMDB0000671		(S)-indole-3-lactic acid	Other	chemical - endogenous ma	
			HMDB07014		1-14:0/2-18:1(11Z) diacylglyce	Other	chemical - endogenous ma	
			HMDB0010383		1-16:1(9Z) lysophosphatidylcł	Other	chemical - endogenous ma	
↓ International			HMDB0010384		1-18:0 lysophosphatidylcholir	Other	chemical - endogenous ma	
*	0.745	1.82E-03	HMDB07190		1-18:1(11Z)/2-18:2(9Z,12Z) dia	Other	chemical - endogenous ma	
Cat and all	-0.937	3.92E-09	HMDB0010386		1-18:2(9Z,12Z) lysophosphati	Other	chemical - endogenous ma	
Set cut off	1.010	1.39E-03	HMDB07248		1-18:2(9Z,12Z)/2-18:2(9Z,12Z)	Other	chemical - endogenous ma	
			HMDB0012108		1-heptadecanoyl-2-hydroxy-s	Other	chemical - endogenous ma	
			HMDB0002815		1-oleoyl lysophosphatidylcho	Other	chemical - endogenous ma	
	-0.856	2.13E-07	HMDB0007883		14:0/20:4(5Z,8Z,11Z,14Z) pho:	Other	chemical - endogenous ma	
			HMDB0007884		14:0/20:4(8Z,11Z,14Z,17Z) pho	Other	chemical - endogenous ma	
			HMDB0005359		16:0/16:0/16:1(9Z)[iso3] triacy	Other	chemical - endogenous ma	
			HMDB0005357		16:0/16:0/18:0[iso3] triacylgly(Other	chemical - endogenous ma	
	0.769	1.28E-02	HMDB0005363		16:0/16:0/20:4(5Z,8Z,11Z,14Z)	Other	chemical - endogenous ma	
			HMDB0005376		16:0/16:1(9Z)/16:1(9Z)[iso3] tr	Other	chemical - endogenous ma	
	0.854	1.90E-05	HMDB0005369		16:0/18:0/18:2(9Z,12Z)[iso6] tı	Other	chemical - endogenous ma	
	0.864	1.06E-04	HMDB0005384		16:0/18:1(9Z)/18:2(9Z,12Z)[isc	Other	chemical - endogenous ma	
	0.597	2.04E-02	HMDB0005392		16:0/20:4(5Z,8Z,11Z,14Z)/20:4	Other	chemical - endogenous ma	
			HMDB0007984		16:0/20:5(5Z,8Z,11Z,14Z,17Z)	Other	chemical - endogenous ma	
			HMDB0010426		18:0/14:0/16:1(9Z)[iso6] triacy	Other	chemical - endogenous ma	

0/234

Flags:

"D" - Duplicates. Gene/Protein/Chemical identifiers marked with an asterisk indicate that multiple identifiers in the dataset file map to a single gene/chemical in the Global Molecular Network.

"O" - Override molecules. Gene/Protein/Chemical identifiers marked as "Override" are displayed with italic text.

"A" - Gene/Protein/Chemical ID marked as Absent. The gene/protein/chemical will not be used as a focus molecule or appear in networks unless you also explicitly override this flag with the Override column.

Choose which analysis do you want

Analyze filter		
dataset	Create Core Analysis	×
Ļ	Selected Dataset: protein_cytokine_metabolite_result Based on this dataset, which Core Analysis type would you like to run?	0
Core analysis Choose which analysis	Expression Analysis Expression Analysis would you like to base the analysis? Tox Analysis measurement will be used to calculate Metabolomics Analysis measurement will be used to calculate directionality (z-scores) in the analysis and will be displayed in color on pathways and networks. If you choose a non-directional measurement (e.g. p-value) then z-scores will not be calculated.	
Set cut off		
	Back	Next

Set Cutoff

Create Expression Analysis - [analysis : protein_cytokine_metabolite_result]

– 🗇 🗙

et Cutoffs Biological	Filters									
	(Analysis Filter	Summary		
General Settings Networks Interaction		Population of genes to consider for p-value calculations: Reference Set Ingenuity Knowledge Base (Genes + Endogenous Chemicals)			Ingenuity Knowledge Base (Endogenous Chemicals Only			/) molecules and/or relationships		
Node Types biologic d	drug 🕜	Relationships to consider: Affects networks and upstream	Relationships to consider: Affects networks and upstream regulator analysis		Ingenuity Knowledge Base (Genes + Endogenous Che Ingenuity Knowledge Base (Genes Only)			hemicals) nan) AND Experimentally Observed) AND viologic drug OR canonical		
Data Sources All	0	 Direct and Indirect Relationships Direct Relationships 		User Dataset			nemical - endogenous mammalian			
miRNA Confidence Ex	xperi 🕐			Affymetrix		>	endogenous non-mammalian OR ase inhibitor OR chemical - other protease inhibitor OR chemical			
Species Human	0				Agilent		>	ical reagent OR chemical toxicant R cytokine OR disease OR enzyme		
Tissues & Cell Lines	0				CodeLink		>	R G-protein coupled receptor OR vth factor OR ion channel OR		
Mutation All	0				Illumina		>	nd-dependent nuclear receptor OR		
					Life Technologies (Applied Bios	ystems)	>	tNA OR MICTORNA OR other OR phosphatase OR related pathway		
Save A	As Default						node OK trar	scription regulator OR translation		
Advanced review Dataset protein Analysis-Ready (83) Add To My Pathway	Mapped IDs	Recalculate 91 anal tabolite_result Observation: (234) Unmapped IDs (51) My List Create Dataset	ysis-ready molecules across of Acute_vs_Control (83) All IDs (285) Metadata	bbservations	₩					
	X Evor p-val		Flags	,,	T X Entrez Gene Name	Location	X Type(s)			
).899	1.42E-16	P02765	Tiays	AHSG	alpha 2-HS glycoprotein	Extracellular Space	other			
292	1.58E-04	P05062		ALDOB	aldolase, fructose-bisphosp.	Cytoplasm	enzyme			
717	1.01E-05	Q9HDC9		APMAP	adipocyte plasma membra	Plasma Membrane	enzyme			
).886	5.49E-17	P02647		APOA1	apolipoprotein A1	Extracellular Space	transporter	pelacarsen		
0.815	5.30E-13	P02652		APOA2	apolipoprotein A2	Extracellular Space	transporter			
0.628	5.72E-06	P06727		APOA4	apolipoprotein A4	Extracellular Space	transporter			

Create Metabo	lomics Analysis - [an	alysis	: protein_cytokine_metabolite_result]	
Set Cutoffs	Biological Filters			
> General Se	ettings	0	Population of genes to consider for p-value calculations:	
Networks	Interaction & Ca	0	Reference Set Ingenuity Knowledge Base (Endogenous Chemicals Only)	

 General Settings 	0	Population of genes to consider for p-value calculations:	
Networks Interaction & Ca	0	Reference Set Ingenuity Knowledge Base (Endogenous Chemicals Only)	
Node Types biologic drug	0	Relationships to consider: Affects networks and upstream regulator analysis	Optional Analyses:
Data Sources All	0	Direct and Indirect Relationships	My Project My Pathways
miRNA Confidence Experi	0	O Direct Relationships	✓ My Lists
Species Human	0		
Tissues & Cell Lines	0		
Mutation All	0		
Save As Defaul	lt		

Advanced

91 analysis-ready molecules across observations

Casual network

the second se . . .

te Expression Analysis - [analysi	s : protein_cytokine_metabolite_resu	lt]					-
Cutoffs Biological Filters							
General Settings	 Generate the following Networks Interaction networks 	orks (increases analysis time)			Analysis Filter Summa Consider only mole where (species = Human)	ary cules and/or relationships AND	
Node Types biologic drug	Include endogenous c Genes are always included	hemicals Molecules per n	etwork Networks per a	nalysis	(confidence = Expe (mol. types = biolog	rimentally Observed) AND gic drug OR canonical	
Data Sources All	 ② Causal networks 	35 ~	25 ~		pathway OR chemic OR chemical - endo	cal - endogenous mammalian ogenous non-mammalian OR	
niRNA Confidence Experi	O Score master regulators for the second	or relationships to diseases, fur	nctions, genes, or chemicals	(max 50)	OR chemical - kinase in OR chemical - prote	ease inhibitor OR chemical - other	
Species Human	Score using causal part Score using causal part V linked COVID10, relate	hs only)19. related immunodoficion	ov 7/1	drug OR chemical r OR complex OR cyt	eagent OR chemical toxicant okine OR disease OR enzyme	
Tissues & Cell Lines		a initiatiodeliciency 74 [COVIL	19-related immunodencien	Remove	OR function OR G-p group OR growth fa	protein coupled receptor OR actor OR ion channel OR	
Mutation All	0		1		kinase OR ligand-de mature microRNA C	ependent nuclear receptor OR DR microRNA OR other OR	
Save As Default	:			7	peptidase OR phos node OR transcripti	phatase OR related pathway ion regulator OR translation	
Advanced	Recalculate 91 anal	ysis-ready molecules across ob	servations				
eview Dataset protein_cytokine	e_metabolite_result Observation:	Acute_vs_Control (83)	\checkmark	You can put interesting			
Analysis-Ready (83) Mapped	l IDs (234) Unmapped IDs (51)	All IDs (285) Metadata		disease or gene			
Add To My Pathway Ad	d To My List Create Dataset	Customize Table		5			
pr Log Ratio 🛛 🗵 Expr	o-value 🗵 ID	Flags	🗵 🛆 Symbol	T 🗵 Entrez Gene Name 🛛 Location	🗴 Type(s)	Drug(s))
899 1.42E-	16 P02765		AHSG	alpha 2-HS glycoprotein Extracellular Space	other		
92 1.58E-	04 P05062		ALDOB	aldolase, fructose-bisphosp Cytoplasm	enzyme		
17 1.01E-	05 Q9HDC9		APMAP	adipocyte plasma membra Plasma Membrane	enzyme		
886 5.49E-	17 P02647		APOA1	apolipoprotein A1 Extracellular Space	transporter	pelacarsen	
).815 5.30E-	13 P02652		APOA2	apolipoprotein A2 Extracellular Space	transporter		
).628 5.72E-	06 P06727		APOA4	apolipoprotein A4 Extracellular Space	transporter		

Run Analysis Cancel

– 🗇 ×

Create Expression Analysis - [analysis : protein_cytokine_metabolite_result]

							Analysis Filter Summa	arv	
General Settings Networks Interaction & Node Types biologic d Data Sources All miRNA Confidence Ex Species Human Tissues & Cell Lines Mutation All Save A	? Sele & Ca ? Irug ? ? ? <	ect all issues and Primary Cells Tissues and Primary Cells Cells Nervous System Organ Systems Other Tissues and Prim Cell Line Cell Line not otherwise Breast Cancer Cell Line Cervical cancer cell line CNS Cell Lines Colon Cancer Cell Lines	Ils not otherwise specified hary Cells specified s		 Stringent filter (filter molecules and Relaxed filter (filter molecules) 	relationships) ?	Consider only mole where (species = Human) (confidence = Expe (mol. types = biolo pathway OR chemic OR chemical - endo chemical - kinase in OR chemical - prot drug OR chemical - prot drug OR chemical r OR complex OR cyt OR function OR G- group OR growth f kinase OR ligand-d mature microRNA (peptidase OR phos node OR transcript	ecules and/or relationships AND erimentally Observed) AND ogic drug OR canonical ical - endogenous mammalian ogenous non-mammalian OR nhibitor OR chemical - other tease inhibitor OR chemical reagent OR chemical toxicant tokine OR disease OR enzyme protein coupled receptor OR factor OR ion channel OR dependent nuclear receptor OR OR microRNA OR other OR sphatase OR related pathway tion regulator OR translation	
			is-ready molecules across obs	ervations					
Advanced Preview Dataset protein	R	ecalculate 91 analys _result Observation: A	cute_vs_Control (83)	~					
Advanced Preview Dataset protein Analysis-Ready (83)	R Cytokine_metabolite Mapped IDs (234)	ecalculate 91 analys _result Observation: A Unmapped IDs (51)	cute_vs_Control (83) All IDs (285) Metadata	~					
Advanced review Dataset protein Analysis-Ready (83) Add To My Pathway	R 	ecalculate 91 analys _result Observation: A Unmapped IDs (51) Create Dataset	cute_vs_Control (83) All IDs (285) Metadata Customize Table	⊻					
Advanced eview Dataset protein Analysis-Ready (83) Add To My Pathway xpr Log Ratio	R A cytokine_metabolite Mapped IDs (234) Add To My List Expr p-value	ecalculate 91 analys result Observation: A Unmapped IDs (51) Create Dataset X ID	cute_vs_Control (83) All IDs (285) Metadata Customize Table Flags	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	T X Entrez Gene Name X	Location	X Type(s)	🗵 Drug(s)	>
Advanced eview Dataset protein Analysis-Ready (83) Add To My Pathway kpr Log Ratio	R Add To My List Add To My List Expr p-value 1.42E-16	ecalculate 91 analys result Observation: A Unmapped IDs (51) Create Dataset X ID P02765	cute_vs_Control (83) All IDs (285) Metadata Customize Table Flags	Symbol AHSG	T X Entrez Gene Name alpha 2-HS glycoprotein	Location Extracellular Space	X Type(s) other	Irug(s)	[]
Analysis-Ready (83) Analysis-Ready (83) Add To My Pathway Appr Log Ratio	R Add To My List X Expr p-value 1.42E-16 1.58E-04	ecalculate 91 analys result Observation: A Unmapped IDs (51) Create Dataset × ID P02765 P05062	cute_vs_Control (83) All IDs (285) Metadata Customize Table Flags	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	 T ➤ Entrez Gene Name ➤ alpha 2-HS glycoprotein aldolase, fructose-bisphosp 	Location Extracellular Space . Cytoplasm	X Type(s) other enzyme	X Drug(s)	:
Advanced eview Dataset protein Analysis-Ready (83) Add To My Pathway epr Log Ratio (899 292	R Acytokine_metabolite Mapped IDs (234) Add To My List Expr p-value 1.42E-16 1.58E-04 1.01E-05	ecalculate 91 analys result Observation: A Unmapped IDs (51) Create Dataset X ID P02765 P05062 Q9HDC9	cute_vs_Control (83) All IDs (285) Metadata Customize Table Flags	Symbol AHSG ALDOB APMAP	 Entrez Gene Name alpha 2-HS glycoprotein aldolase, fructose-bisphosp adipocyte plasma membra 	Location Extracellular Space Cytoplasm Plasma Membrane	X Type(s) other enzyme enzyme	⊠ Drug(s)	(
Advanced eview Dataset protein Analysis-Ready (83) Add To My Pathway xpr Log Ratio 0.899 292 717 0.886	R Acytokine_metabolite Mapped IDs (234) Add To My List Expr p-value 1.42E-16 1.58E-04 1.01E-05 5.49E-17 5.49E-17	ecalculate 91 analys result Observation: A Unmapped IDs (51) Create Dataset X ID P02765 P05062 Q9HDC9 P02647 P02647	cute_vs_Control (83) All IDs (285) Metadata Customize Table Flags	Symbol AHSG ALDOB APMAP APOA1	 Entrez Gene Name alpha 2-HS glycoprotein aldolase, fructose-bisphosp adipocyte plasma membra apolipoprotein A1 	Location Extracellular Space Cytoplasm Plasma Membrane Extracellular Space	X Type(s) other enzyme enzyme transporter	Drug(s) pelacarsen	

Choose which analysis do you want

Analyze filter		- · · · · · ·
dataset	Create Core Analysis	×
	Selected Dataset: protein_cytokine_metabolite_result Based on this dataset, which Core Analysis type would you like to run?	0
Core analysis Choose which analysis Set cut off	Expression Analysis would you like to base the analysis? Tox Analysis measurement will be used to calculate Metabolomics Analysis measurement will be used to calculate directionality (z-scores) in the analysis and will be displayed in color on pathways and networks. If you choose a non-directional measurement (e.g. p-value) then z-scores will not be calculated.	
	Back	Next

Pathway or gene activity predicted by IPA

Inhibited

Activated

Actual measurement of gene expression in your dataset

Downregulated Upregulated

Actual dataset measurement

VS.

What IPA expects if pathway is activated

🛆 Symbol	Measurement	+	Expected
	Expr Log Ratio	х	
CCL2	+-2.030		🕇 Up
CD44	↓ -1.634		🕇 Up
CD274	+-2.218		🕇 Up
COL1A1	↓ -2.040		🕇 Up
COL1A2	↓ -1.920		🕇 Up

Pathway inhibited

Z score

A Symbol	Measurement +	Expected
	Expr Log Ratio \times	
CCL2	+-2.030	🕇 Up
CD44	† 1.634	🕇 Up
CD274	+-2.218	🕇 Up
COL1A1	† 2.040	🕇 Up
COL1A2	↓-1.920	🕇 Up

No clear signal for prediction Z score = 0

Symbol	Measurement	+	Expected
	Expr Log Ratio	×	
CCL2	† 2.030		🕇 Up
CD44	† 1.634		🕇 Up
CD274	† 2.218		🕇 Up
COL1A1	† 2.040		🕇 Up
COL1A2	† 1.920		🕈 Up

Pathway activated

+ Z score

How well do the actual measurements match the expected measurements?

$$z = \frac{x}{\sigma_x} = \frac{\sum_i x_i}{\sqrt{N}} = \frac{N_+ - N_-}{\sqrt{N}} = (7-1)/\sqrt{8} = 2.12 (= \text{ predicted activation})$$

• z-score is a statistical measure of the match between expected relationship direction and observed gene expression

- z-score greater than 2 or less than -2 is considered significant
- Note that the actual z-score is weighted by the underlying findings, the relationship bias and dataset bias

Symbol	Measurement	+	∠ Expected
	Expr Log Ratio	×	
NR5A2	+-1.002		+ Down
ABCB11	+-1.056		🔸 Down
CYP2B6	+-3.063		+ Down
PPARGC1A	+-2.495		🕹 Down
ACOX1	+-1.727		+ Down
SLCO1B3	† 3.223		🕹 Down
TLR4	† 1.213		🕈 Up
LY96	† 1.189		🕈 Up
IL1R1	† 1.634		🕈 Up
IL1RAP	† 1.046		🕈 Up
IL1B	† 3.890		🕈 Up
LIPC	+-1.375		🕈 Up

Z-score = 2.4

10/12 measurements match expected

Mostly matching

Signal predominantly points to predicted activation

Symbol	Measurement	+ Expected
Symbol	Expr Log Ratio	×
CREB3L3	+-1.536	↑ Up
IHH	↓ -1.173	🕈 Up
PBX1	+-1.037	🕈 Up
CD86	† 1.016	+ Down
IL1RAP	† 1.046	+ Down
РКМ	† 1.082	🕈 Up
HLA-DMB	† 1.106	+ Down
IL18RAP	† 1.124	🔸 Down
CREB5	† 1.148	🕈 Up
CREB3L2	† 1.179	🕈 Up
CCN4	† 1.204	🕈 Up
TLR4	† 1.213	🔸 Down

Z-score = -2.236

4/12 measurements match expected

Mostly anti-matching

Signal predominantly points to predicted inhibition

IPA Analysis Tabs

Summary Tab	Expression Analysis - Convalescence vs Acute	room Analysis Discossos & Eurotions	Pogulator Effects Network	e liete Apolycie Mot	sh Molocul	- D >			
	QIAGEN IPA Interpret	etation of this analysis		Expor	t: 🐼 🔝 🛙				
	> Experiment Metadata								
	> Analysis Settings								
	V Top Canonical Pathways								
	Name		p	-value	Overla	ар			
	Acute Phase Response Signaling			3.61E-20	7.6 %	14/184			
	LXR/RXR Activation			1.13E-18	9.8 %	12/123			
	Role of JAK family kinases in IL-6-type Cytokir	ne Signaling	· · · · ·	6.12E-13	10.4 %	8/77			
	Response to elevated platelet cytosolic Ca2+			9.41E-13	6.8 %	9/132			
	DHCR24 Signaling Pathway		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.41E-12	6.5 %	9/138			
	> / Top Upstream Regulators		123430703 7						
	 Upstream Regulators 								
	Name		n-value		Predicted A	ctivation			
			• 2.42F-10		Tredicted A				
	II 17A		• 5.44F-10						
	IL1B		- 2.76E-09	Inhibited					
	FCGR2A								
	TNF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	— 2.18E-08						
	✓ Causal Network		This is a logarithmic scale sho	wing values from 1 to 1E-1	0				
	Name		p-value		Predicted A	ctivation			
	FCGR2A	•	- 1.51E-09						
	TNF	•	2.19E-09						
	EVNI	•	6/0E-09						

Top 5 for all analysis modules and a quick high-level look at your data

QIAG

Graphical Summary Tab

Graphical display of the top biological themes and features within your data with added AI inferences (dotted lines)

Pathways Tab

Metabolic and cell signaling pathways that are enriched in your data with activity prediction

positive z-score ____ z-score = 0 ____ negative z-score ____ no activity pattern available

- Use experimentally observed relationships (vs. Predicted event) between Upstream Regulators and genes to predict potential regulator and activation
- Predict activation or inhibition of regulator to explain the changes in gene expression in your dataset
- Calculates two complementary statistical measures:
 Activation z-score
 Overlap p-value

Upstream Analysis Tab

Casual network

Diseases & Functions Tab

Diseases and functions that may be key to the biology in your experimental data based on patterns of expression observed

Regulator Effects Tab

Expression Analysis - Acute_vs_Control

Summary Graphical Summary Pathways Upstream Analysis Diseases & Functions Regulator Effects Networks Lists Analysis Match Molecules

Network of	Generate Networks	Add To My Pathway	Add To My List	Display as Network	Customize Table	•		Cons 3.317 - 2.64	16 (1/11) 🗸 📧 🔊 🜔	0
moloculos	ID	T	< Node Total	▼ × Regulator Total	T × Regulators	T × Target Total	T × Target Molecules i T × Disease & Functio T ×	Diseases & Functi	T × Known Regulator	Canaa fram
	1	3.317	13	1	ERK (family)	all 1 11	↑CCL4, ↑CXCL1, ↑Call 11 1	Cell movement	all 1 100% (1/1)	Genes from
and regulators	2	3.317	13	1	ERK (family)	all 1 11	↑CCL4, ↑CXCL1, ↑Call 11 1	Migration of cells	all 1 100% (1/1)	dataset
that are	3	3.317	13	1	IL1A	all 1 11	↑CXCL1, ↑CXCL10, ↑all 11 1	Cell movement	all 1 100% (1/1)	involved in
predicted to	/	3.317	13	1	ALX	all 1 11	CXCL1, CCCLTU, Fall 11 1	Migration of cells	all 1 100% (1/1)	discoss or
	5	3.162	12	1	ERK (family)	all 1 10	↑CCL4, ↑CXCL1, ↑Call 10 1	Cell movement of tum.	all 1 100% (1/1)	uisease oi
be involved in	6	3.162	12	1	TNF	all 1 10	↑CD40LG, ↑ CRP, ↑ Call 10 1	Adhesion of myeloid c.	all 1 100% (1/1)	function
diseases &	7	3.074	9	1	↑ IL18	all 1 7	↑CCL4, ↑CXCL10, ↑Call 7 1	Binding of blood cells	all 1 100% (1/1)	
functions	8	3 024	9	1	↑IL18	all 1 7	↑CCL4, ↑CXCL10, ↑Call 7 1	Cell movement of leuk.	all 1 100% (1/1)	
Turiotions	9	3.024	9	1	↑ IL18	all 1 7	↑CCL4, ↑CXCL10, ↑Call 7 1	Cell movement of lym.	all 1 100% (1/1)	
	10	3.024	9	1	↑ IL18	all 1 7	↑CCL4, ↑CXCL10, ↑Call 7 1	Cell movement of lym.	all 1 100% (1/1)	
	11	3.024	9	1	↑ IL18	all 1 7	↑CCL4, ↑CXCL10, ↑Call 7 1	Cell movement of mo.	all 1 100% (1/1)	
	12	3.024	9		₱IL18	all 1 7	↑CCL4, ↑CXCL10, ↑Call 7 1	Lymphocyte migration	all 1 100% (1/1)	Disease or
(11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	13	3.024	9	1	↑IL18	all 1 7	↑CCL4, ↑CXCL10, ↑Call 7 1	Migration of blood cent	sdii 1 100% (1/1)	function
How matching		3.024	9	1	₱1L18	all 1 7	↑CCL4, ↑CXCL10, ↑Call 7 1	Migration of lymphati.	all 1 100% (1/1)	Tunction
vour data is		3.015	13	1	TNF	all 1 11	↑CCL4, ↑CD40LG, ↑all 11 1	Binding of tumor cell I.	all 1 100% (1/1)	
with the		3.000	11	1	TNF	all 1 9	↑CCL4, ↑CD40LG, ↑Call 9 1	Adhesion of endotheli.	all 1 100% (1/1)	
with the		3.000	11	1	TNF	all 1 9	TCD40LG, TCRP, TCXall 9 1	Adhesion of phagocyt.	all 1 100% (1/1)	
expected		3.000	11	1	INF	all 1 9	TCD40LG, TCXCL1, Tall 9 1	Migration of endotnell.	all 1 100% (1/1)	
directions in		2.840	10	1	TNF CDV (Family)	all 1 10		Quantity of Ca2	all 1 100% (1/1)	
IPA for the		2.020	10	1	ERK (lattily)	dil 1 O		Investion of colls	all 1 100% (1/1)	(
		2.020	10	1	ERK (family)	dii i o all 1 8		Migration of tumor cel	all 1 100% (1/1)	Known
diseases &		2.828	10	1	II 1A	all 1 8		Migration of tumor cel.	all 1 100% (1/1)	
functions		2.828	10	1	IL 1B	all 1 8	↑CD40LG ↑CRP. ↑CXall 8 1	Adhesion of myeloid c.	all 1 100% (1/1)	connections
they're		2.828	10	1	P38 MAPK (family)	all 1 8	↑CXCL10, ↑CXCL8, ↑all 8 1	Binding of blood cells	all 1 100% (1/1)	in IPA
and y ro	5	2.828	10	1	P38 MAPK (family)	all 1 8	↑CXCL10, ↑CXCL8, ↑all 8 1	Cell movement of leuk.	all 1 100% (1/1)	hetween
predicted to	1	2.28	10	1	STAT1	all 1 8	↑CXCL1, ↑CXCL10, ↑all 8 1	Migration of cells	all 1 100% (1/1)	regulater and
effect	B	2.828	10	1	TLR7	all 1 8	↑CCL4, ↑CXCL1, ↑CXall 8 1	Cell movement of turn.	all 1 0% (0/1)	regulator and
	29	2.828	10	1	TLR7	all 1 8	↑CCL4, ↑CXCL1, ↑CXall 8 1	Migration of cells	all 1 0% (0/1)	disease &
	30	2.714	13	1	TNF	all 1 11	♦CXCL1, ♦CXCL10, ★all 11 1	Organization of cytosk.	all 1 100% (1/1)	function-
	31	2.683	7	1	↑CD40LG	all 1 5	↑CCL4, ↑CXCL8, ↑ICAall 5 1	Adhesion of endotheli.	all 1 100% (1/1)	diagover
	P	2.683	7	1	↑CD40LG	all 1 5	CXCL8, TICAM1, TILall 5 1	Adhesion of myeloid c.	all 1 100% (1/1)	discover
Poquiatore		2.683	7	1	✦CD40LG	all 1 5	↑CXCL8, ↑ICAM1, ↑ILall 5 1	Adhesion of phagocyt.	all 1 100% (1/1)	novel
ixeguiators		2.683	7	1	↑CD40LG	all 1 5	↑CCL4, ↑CXCL8, ↑ICAall 5 1	Binding of endothelial.	all 1 100% (1/1)	relationships
involved in		2.683	7	1	↑CD40LG	all 1 5	CXCL10, CXCL8, Iall 5 1	Immune response of I.	all 1 100% (1/1)	relationinpo
network	ō	2.683	7	1	♦CD40LG	all 1 5	↑CXCL8, ↑IL10, ↑IL15, *all 5 1	Stimulation of cells	all 1 100% (1/1)	
		2.683	7	1	↑ IL18	all 1 5	↑CCL4, ↑CXCL10, ↑Call 5 1	Adhesion of tumor cell.	all 1 100% (1/1)	
	38	2.667	11	1	ERK (family)	all 1 9	↑CXCL1, ↑CXCL10, ↑all 9 1	Cell proliferation of tu.	all 1 100% (1/1)	
	39	2.667	11	1	IL1A	all 1 9	↑CXCL1, ↑CXCL10, ↑all 9 1	Cell proliferation of tu.	all 1 100% (1/1)	
	40	2.646	9	1	CAMP	all 1 7	↑CCL4, ↑CXCL1, ↑CXall 7 1	Chemotaxis	all 1 100% (1/1)	

Ties dataset molecules and regulators to a predicted phenotypic outcome

– 🗆 🗙

Regulate Effect

My Pathways

.

Networks Tab

How signatures are created and compared

- Data source from Omicsoft datalands
- Canonical Pathways (up to 20 pathways)
- Upstream Regulators (up to 100 regulators)
- Causal Networks (up to 100 master regulators)
- Diseases & Functions (up to 100 diseases or functions)

Analysis Match Tab

Public previou analyse matchi	c and sly run es with ing or	Expression Analysis - Acute_vs_Co Summary Graphical Summar Evaluate Metadata View	ontrol y Pathways Upstream. As Heatmap View Comp	Analysis Diseases & Function	is Regulator Effects Networks I	Lists Analysis Match Mole	ocules			×	Average z- score from all 4 analysis features
resu	ults	Analysis Name GSE6584- normal control [blood ves:	Project Project sel] oxidized [HumanDisease sell ovidized [HumanDisease	× case ▼ × case.t ▼ × normal control blood vessel	case.t T × comp T × comp oxidized PAPC Treatment vs Treatmen oxidized PAPC Treatment vs. Treatmen	T × comp T × projec 1 tGro CMP:ISoT7J49J> GSE6584 GSE6584 tGro CMP:ALIVC4Izi GSE6584 GSE6584	<pre>r × weblink T × CP (z- https://www https://www</pre>	UR (z T × CN (z 42.82 20.74	T × DE (z T × 43.03		DE: Downstream
Double to oper anal	e click n core ysis	GSE6584- normal control [blood ves GSE6584- normal control [blood ves GSE6584- normal control [blood ves GSE6584- normal control [blood ves	sel) diesel ext HumanDisease sel) diesel ext HumanDisease sel) diesel ext HumanDisease sel) diesel ext HumanDisease sel) diesel ext HumanDisease	normal control blood vessel normal control blood vessel normal control blood vessel normal control blood vessel	diesel exhaust Treatment vs Treatment diesel exhaust Treatment vs Treatmen diesel exhaust Treatment vs Treatmen diesel exhaust Treatment vs Treatmen	 > di CMP:1cqkjwQX GSE6584 tGro CMP:1cqkjwQX GSE6584 tGro CMP:6wNYKnY: GSE6584 tGro CMP:fCqqMb77 GSE6584 > di CMP:rwsVirta8 GSE6584 	https://www https://www https://www https://www	48.30 51.64 51.64 44.72	50.92 47.14 45.13 47.14	24.81 25.61 24.79 20.83 24.19 13.88 22.97 20.02	effects (i.e. diseases and functions
Link to Explor view vo	Land rer to blcano	GSE6584- normal control [blood ves GSE6584- normal control [blood ves GSE6584- normal control [blood ves GSE6584- normal control [blood ves GSE6584- normal control [blood ves	sel] oxidized f HumanDisease sel] oxidized f HumanDisease sel] oxidized f HumanDisease sel] oxidized f HumanDisease sel] diesel ext HumanDisease sel] diesel ext HumanDisease	normal control blood vessel normal control blood vessel normal control blood vessel normal control blood vessel normal control blood vessel	oxidized PAPC Treatment vs Treatment diesel exhaust Treatment vs Treatment oxidized PAPC Treatment vs Dosage = diesel exhaust Treatment vs Dosage = diesel exhaust Treatment vs Treatment	tGro CMP:n0k482Rc GSE6584 tGro CMP:n0k482Rc GSE6584 > ox CMP:x9dWYXc GSE6584 > dx CMP:x9dWYXc GSE6584 > dx CMP:x30xcZqNI GSE6584 tGro CMP:s0xcZqNI GSE6584	https://www https://www https://www https://www https://www	44.72 36.51 34.16 50.00 48.30	45.13 45.13 3543	22.46 23.28 20.4 16.55 16.87 24.54 12.50 20.59 208	CN: Causal Networks
compa	arison	GSE6584- normal control [blood ves: GSE6584- normal control [blood ves: GSE6584- normal control [blood ves: GSE6584- normal control [blood ves: GSE6584- normal control [blood ves:	sel] diesel ext HumanDisease sel] oxidized f HumanDisease sel] diesel ext HumanDisease sel] oxidized f HumanDisease sel] diesel ext HumanDisease	normal control blood vessel normal control blood vessel normal control blood vessel normal control blood vessel normal control blood vessel	diesel exhaust Treatment1 vs Dosage = oxidized PAPC Treatment1 vs Dosage = diesel exhaust Treatment1 vs Dosage = oxidized PAPC Treatment1 vs Dosage = diesel exhaust Treatment vs Treatment	> dia. CMP:7j9cOfkeO GSE6584 > ox CMP:ofgxiWSFz GSE6584 > dia. CMP:2gTDLOgz GSE6584 > ox CMP:2hKlcyxxdF GSE6584 tGro CMP:7hSXnfAL GSE6584	https://www https://www https://www https://www https://www	21.08 20.74 40.82 36.51 34.16 25.40 17.32	-27.22	10.46 -10.98 10.21 4.91 9.13 10.98 8.08 4.15 4.33 -10.98	UR: Upstream Regulators
		GSE6584- normal control (blood ves: GSE6584- normal control (blood ves: GSE6584- normal control (blood ves: GSE75940- normal control (blood ve	sel] diesel ext HumanDisease sel] diesel ext HumanDisease sel] diesel ext HumanDisease ssel] Transfec HumanDisease	normal control blood vessel normal control blood vessel normal control blood vessel normal control blood vessel	diesel exhaust Treatment1 vs Dosage = diesel exhaust Treatment1 vs Dosage = diesel exhaust Treatment1 vs Dosage = Transfection_L Treatment vs Transfecti	 > di CMP:38ll6alSuJ/ GSE6584 > di CMP:1JMNZjqN GSE6584 > di CMP:D84Zefb11 GSE6584 ion = CMP:ghr8xslkvv GSE75940 	https://www https://www https://www http://www.n	25.82	-31.75 -38.49 -57.74	-1.48 10.98 -9.62 -14.43	CP: Canonical Pathways

Matches your core analysis against public datasets in IPA as well as previously run core analyses and returns similar and dissimilar datasets based on 4 core analysis features: CP, UR, CN, DE

All columns are filterable

Positive z-score: Pink: matching

Negative z-score: Blue: antimatching

Molecules

Biomarker

Application

– 🗆 ×

Expression Analysis - Acute_vs_Control

Summary Graphical Sum	nmary Pathways Upstrear	n Analysis Diseases & Func	tions Regulator Effects N	letworks Lists Analysis N	Match Molecules			
Add To My Pathway	Add To My List Create Dat	taset Customize Table	e 🖦 🗘				Symbol (S)-2-hydrox	ybut (1/3) 🗸 🔍 》 🕐
/ Symbol T	Entrez Gene Name 🛛 🕇 🗙	Identifier +	Measurement	+ Add/Remove column(s)	Location T ×	Type(s) T ×	Biomarker Applicatio 🍸 🗙	Drug(s) T ×
		Gene Symbol - huma T ×	Expr Log Ratio T ×	Expr p-value T ×				
4-hydroxyphenylpyruvic acid		HMDB0000707	† 3.288	4.67E-43	Other	chemical - endogenous mamm		
5-hydroxyindol-3-acetic acid		HMDB0000763			Other	chemical - endogenous mamm	diagnosis, efficacy	
5-hydroxytryptamine		HMDB0000259	† 7.260	4.21E-38	Other	chemical - endogenous mamm	diagnosis, efficacy,	
aceturic acid		HMDB0000532			Other	chemical - endogenous mamm		
AFM	afamin	P43652			Extracellular Space	other	unspecified application	
AHSG	alpha 2-HS glycoprotein	P02765	↓ -0.899	1.42E-16	Extracellular Space	other	unspecified application	
ALDOB	aldolase, fructose-bisphosphat	P05062	† 2.292	1.58E-04	Cytoplasm	enzyme	unspecified application	
allantoin		HMDB0000462			Other	chemical - endogenous mamm		
alpha-hydroxyglutarate		HMDB0059655	† 1.462	9.99E-15	Other	chemical - endogenous mamm		
alpha-ketoisovaleric acid		HMDB0000019	↓ -0.630	4.00E-08	Other	chemical - endogenous mamm		
alpha-N-phenylacetyl-L-glutam	nii	HMDB0006344			Other	chemical - endogenous mamm		
APMAP	adipocyte plasma membrane a	Q9HDC9	† 0.717	1.01E-05	Plasma Membrane	enzyme		
APOA1	apolipoprotein A1	P02647	↓ -0.886	5.49E-17	Extracellular Space	transporter	diagnosis, efficacy,	pelacarsen
APOA2	apolipoprotein A2	P02652	↓ -0.815	5.30E-13	Extracellular Space	transporter	efficacy	
APOA4	apolipoprotein A4	P06727	↓ -0.628	5.72E-06	Extracellular Space	transporter	unspecified application	
APOC1	apolipoprotein C1	P02654	↓ -0.764	5.72E-06	Extracellular Space	transporter	prognosis,	
APOC3	apolipoprotein C3	P02656	† 0.764	1.58E-04	Extracellular Space	transporter	diagnosis, efficacy	olezarsen, volanesorsen
APOM	apolipoprotein M	O95445	↓ -0.734	5.68E-12	Plasma Membrane	transporter		
ATRN	attractin	075882			Extracellular Space	other		
B2M	beta-2-microglobulin	P61769	† 1.634	1.82E-13	Plasma Membrane	transmembrane receptor	disease progression, efficacy,	4'-iodo-4'-deoxydoxorubicin
beta-alanine		HMDB0000056	† 0.649	5.09E-04	Other	chemical - endogenous mamm		,
beta-hydroxyisovaleric acid		HMDB0000754	† 1.359	1.05E-03	Other	chemical - endogenous mamm		
BTD	biotinidase	P43251	↓ -0.626	2.55E-09	Extracellular Space	enzyme		
butyryl-L-carnitine		HMDB0002013	† 0.987	2.49E-05	Other	chemical - endogenous mamm		
C22-lactosylceramide		HMDB0011594			Other	chemical - endogenous mamm		
C9	complement C9	P02748	† 1.071	2.98E-14	Extracellular Space	other	unspecified application	
CA1	carbonic anhydrase 1	P00915	† 2.012	2.42E-08	Cytoplasm	enzyme		acetazolamide, benzthiazide,
CCL22	C-C motif chemokine ligand 22	CCL22	↓ -0.593	7.20E-03	Extracellular Space	cytokine	unspecified application	
CCL4	C-C motif chemokine ligand 4	CCL4	† 0.919	6.48E-03	Extracellular Space	cytokine	diagnosis, efficacy, prognosis	
CD40LG	CD40 ligand	CD40LG	† 3.272	9.30E-19	Extracellular Space	cytokine	diagnosis, efficacy,	BMS-986004, VIB4920,
CFD	complement factor D	P00746	† 1.127	1.56E-08	Extracellular Space	peptidase		danicopan
cholesterol linoleate		HMDB05192			Other	chemical - endogenous mamm		
cholesteryl (5Z,8Z,11Z,14Z,17Z)	-€	HMDB06731			Other	chemical - endogenous mamm		
cholesteryl 9-hexadecenoate		HMDB05197			Other	chemical - endogenous mamm		
cholesteryl eicosatrienoate		HMDB0006736			Other	chemical - endogenous mamm		
cholesteryl margarate*		HMDB0060059*	↓ -0.761	4.20E-07	Other	chemical - endogenous mamm		
cholesteryl myristate		HMDB0006725	↓ -0.932	5.66E-08	Other	chemical - endogenous mamm		
cholesteryl pentadecanoate		HMDB0060057			Other	chemical - endogenous mamm		
choline		HMDR000007			Other	chemical - endogenous mamm	officacy	

Unsupervised method Separate COVID19 patients to 3 cluster Cluster 3 poor status

	A	В	С
-	Biomarker name	indentifier	Percentage Deviation
2	TG(18:2_36:3)	NA	65 .1 5435
8	TG(18:2_36:4)	NA	70.42088
ł	TG(18:3_36:4)	NA	70.85822
5	N-Acetyl-Aspartic acid	HMDB0000201	71.30437
5	TG(18:2_36:5)	NA	71.62724
7	Guanine	HMDB0000132	-71.83251
8	Protein AMBP	P02760	76.56766
)	Creatinine	HMDB0000562	79.54263
0	Apolipoprotein(a)	P08519	83.2135
1	Methylmalonic acid	HMDB0000845	94.58442
2	p-Hydroxyhippuric acid	HMDB0000715	99.0861
3	IL-3	P08700	99.81049
4	Cystathionine	HMDB0000675	101.45969
5	Phenylacetylglutamine	HMDB0001961	103.17527
6	N-Acetyl-Tryptophan	HMDB0013713	106.88627
7	Trimethylamine N-Oxide	HMDB0001965	107.73705
8	Methylhistidine	HMDB0001331	111.25071
9	Fructose-bisphosphate aldolase B	P05062	121.84065
0	Beta-2-microglobulin	P61769	122.31938
1	N-Acetyl-Serine	HMDB0002180	136.2814
2	2-Hydroxyphenylacetic acid	HMDB0000669	136.72478
3	Hippuric acid	HMDB0000714	157.83553
4	Kynurenic acid	HMDB0000684	163.77833
5	4-Hydroxyphenylacetic acid	HMDB0000668	177.55187

Bioprofilter

Next

Cancel

									Species	get C	Correlation/Causal				
										$\overline{\Box}$	$\overline{\Box}$		Ţ		
BioProfiler											\checkmark				- 0 ×
Add To My Pathwa	y Add To My List	Display as Network	Create Dataset	Limit to Dataset	protein_cytokin	8 ₩			0	bservation: Acute_vs_Contro	bl ~				0
Molecule				+	Disease or Function Ev	vidence									+
🛆 Symbol 🔳	Molecule Type 🔳 🗵	ID 🛛 🗙	Expr Log Ratio 🏾 🔳 🗵	Expr p-value 🔳 🗴	Molecule Acti 🔳 🗵	Effect on Dise	🛚 🗵 Disease or Funct	i 🝸 Mutation evid 🍸 🗵	Biomarker Ap	👅 🗵 Species Evide 🔳 🗵	Drug target e 🔳 🗵	Expression evi	. T 🗵 Causal or Cor T	✗ Findings	×
APOA1	transporter	P02647	-0.886	5.49E-17	decreased activity	affects	Atherosclerosis	all 2 wild type	not applicable	Human	phase 3	not applicable	correlation	5	
APOC3	transporter	P02656	0.764	1.58E-04	decreased activity, incre	affects	Familial partial lip	. all 4 wild type	not applicable	Human	phase 2/3,phase 3	not applicable	correlation	24	
CA1	enzyme	P00915	2.012	2.42E-08	decreased activity	affects	Absence seizure	all 140 wild type	not applicable	Human	approved, phase 2/3, ph	not applicable	correlation	816	
CD40LG	cytokine	CD40LG	3.272	9.30E-19	decreased activity	affects	Sjögren syndrome	all 1 wild type	not applicable	Human	phase 3	not applicable	correlation	2	
CFD	peptidase	P00746	1.127	1.56E-08	decreased activity	affects	Paroxysmal noctur.	all 1 wild type	not applicable	Human	phase 3	not applicable	correlation	3	
D-glucose	chemical - endogenou	HMDB0000122	0.685	4.07E-06	increased activity	decreases	Inguinal hernia	all 1 wild type	not applicable	Human	phase 4	not applicable	causal	1	
► EGF	growth factor	EGF	3.810	9.77E-20	increased activity	decreases	Deep partial thickn	e all 2 wild type	not applicable	Human	phase 2/3	not applicable	causal	2	
► F5	other	P12259	0.834	3.34E-11	decreased activity, incre	affects	Acute ischemic st	all 21 wild type	not applicable	Human	approved, phase 3, phas	not applicable	correlation	54	
FGA	other	P02671	0.958	1.35E-06	increased activity	affects	Bleeding	all 3 wild type	not applicable	Human	approved, phase 3, phas	not applicable	correlation	3	
FGB	other	P02675	1.020	2.63E-16	increased activity	affects	Bleeding	all 3 wild type	not applicable	Human	approved, phase 3, phas	not applicable	correlation	3	
FGF2	growth factor	FGF2	1.296	1.02E-07	decreased activity, incre	affects	Bladder discomf	all 13 wild type	not applicable	Human	approved, phase 2/3, ph	not applicable	correlation	25	
FGG	other	P02679	0.911	6.96E-13	increased activity	affects	Bleeding	all 3 wild type	not applicable	Human	approved, phase 3, phas	not applicable	correlation	3	
FN1	other	P02751	1.064	2.43E-09	increased activity	affects	Advanced metast	all 17 wild type	not applicable	Human	approved, phase 3, phas	not applicable	correlation	17	
▶IL15	cytokine	IL15	0.623	6.66E-11	decreased activity, incre	affects	Active vitiligo	all 8 wild type	not applicable	Human	approved, phase 2/3, ph	not applicable	correlation	14	
►IL17F	cytokine	IL17F	-4.173	4.13E-02	increased activity	affects	Active stage ank	all 17 wild type	not applicable	Human	approved, phase 3, phas	not applicable	correlation	72	
▶IL1RN	cytokine	IL1RN	2.314	6.87E-10	increased activity	affects	Chronic renal impa	ii all 7 wild type	not applicable	Human	approved, phase 3, phas	not applicable	correlation	15	
►IL4	cytokine	IL4	0.614	2.18E-08	decreased activity	affects	Active vitiligo	all 5 wild type	not applicable	Human	approved, phase 3	not applicable	correlation	8	
►IL6	cytokine	IFNB2	4.562	4.17E-11	decreased activity, incre	affects	Active rheumatoi	all 82 wild type	not applicable	Human	approved, phase 2/3, ph	not applicable	correlation	299	
▶IL7	cytokine	IL7	1.406	8.09E-14	decreased activity	affects	Active vitiligo	all 5 wild type	not applicable	Human	approved, phase 3	not applicable	correlation	8	
inosine	chemical - endogenou	HMDB0000195	2.489	5.86E-03	increased activity	decreases	Advanced maligna.	all 1 wild type	not applicable	Human	phase 2/3	not applicable	causal	1	
L-glutamic acid	chemical - endogenou	HMDB0000148	2.365	4.69E-44	increased activity	decreases	Lymphoma, Sarco.	all 2 wild type	not applicable	Human	phase 3	not applicable	causal	2	
▶ PDGFB	growth factor	PDGFB	2.807	5.56E-27	decreased activity, incre	affects	Accelerated pha a	all 148 wild type	not applicable	Human	approved, phase 2/3, ph	not applicable	correlation	351	
► SELP	transmembrane recept	P16109	2.232	1.42E-16	increased activity	affects	Sickle cell anemia	all 2 wild type	not applicable	Human	approved, phase 3, phas	not applicable	correlation	10	
SERPING1	other	P05155	0.706	5.79E-16	increased activity	decreases	Hereditary angioed	d all 2 wild type	not applicable	Human	phase 2/3,phase 3	not applicable	causal	2	
▶ TF	transporter	P02787	-0.603	9.21E-13	increased activity	affects	Acute myocardial	all 80 wild type	not applicable	Human	approved, phase 2/3, ph	not applicable	correlation	215	
▶ TTR	transporter	P02766	-0.645	5.54E-05	decreased activity, incre	affects	Cardiac amyloid	all 10 unclassified mutation,	not applicable	Human	approved, phase 2/3, ph	not applicable	correlation	69	
▶ VEGFA	growth factor	VEGFA	3.902	9.53E-19	decreased activity, incre	affects	Adenocarcinoma a	all 692 wild type	not applicable	Human	approved, phase 2/3, ph	not applicable	correlation	9801	
▶ ∨WF	other	P04275	3.578	1.83E-37	increased activity	affects	Bleeding	all 13 wild type	not applicable	Human	approved, phase 2/3, ph	not applicable	correlation	310	

Canonical pathway comparison

Comparison Analysis - Analysis Comparison 1

Settings/Legend Filter Measurement: Activation z-score Visualize: z-score View Report View Report Open Network Gene Heatmap C C View Report Open Network Gene Heatmap C C C View Report Open Network Gene Heatmap C C C C C C C C C C C C C	Canonical Pathways	Canonical Pathways Upstream Analysis Diseases & Functions				My Pathways	² athways Molecules				
Filter Measurement: Activation z-score 2.828 3.742 Sort Method: Score V Visualize: z-score Insignificance Threshold: (absolute value) Apply Cear View Report Open Network Gene Heatmap View Report Open Network Gene Heatmap Company View Report Open Network Gene Heatmap Company View Report Open Network Gene Heatmap Company Warburg Effect Signaling Pathway Non-Signaling Pathway Company Company Wound Heating Signaling Pathway Company Company Company Company Varburg Effect Signaling Pathway Company Company Company Company Company Varburg Hierosis Kiopathic Signaling Pathway Company	r Settings/Legend										
Inter Measurement: Activation z-score 2.828 3.742 Sort Method: Score V Vsualize: z-score View Report Open Network Gene Heatmap We to prove the second	F 'l										
Measurement: Activation z-score -2.828 3.742 Sort Method: Score Visualize: z-score Z-score Z-score Z-score: z-score Z-score: z-s	Filter						0				
Sort Method: Score V Visualize: z-score Z-score Visualize: z-score Z-score Visualize: z-score Z-s	Measurement: Activation z-score -2.828										
Insignificance Threshold: (absolute value) Apply Clear View Report Open Network Gene Heatmap	Sort Method: Score Visualize: z-score V										
View Report Open Network Gene Heatmap View Report Open Network Gene Heatmap View Report Open Network Gene Heatmap View Constraints of the Constraint of the	Insignificance Thresh	nold: (ab	osolute value) Apply	Clear							
View Report Open Network Gene Heatmap Image: Control of the second	~~										
Narburg Effect Signaling Pathway Wound Healing Signaling Pathway Response to elevated platelet cytosolic Ca2+ Pathory Interpret to the set of	View Report Op	en Network 🛛 🛛 Gene	Heatmap 🛛 🎛 🐼 🗖	Expand Head	der						
Arburg Effect Signaling Pathway Nound Healing Signaling Pathway Response to elevated platelet cytosolic Ca2+ Pathogen Induced Cytokine Storm Signaling Pathway Author Phase Response Signaling VAF/MAP kinase cascade Lumor Microenvironment Pathway Transport of norganic cations/anions and amino acids/oligopeptides Dendritic Cell Maturation Cachexia Signaling Pathway Valimonary Fibrosis Idiopathic Signaling Pathway Fransport of bile salts and organic acids, metal ions and amine compounds Communication between Innate and Adaptive Immune Cells Interleukin-10 signaling L-17 Signaling Role of Tissue Factor in Cancer Salpha () signalling Pathway Valtiple Sclerosis Signaling Pathway Valtipe Sclerosis Signaling Pathway Karconhage Classical Activation Signaling Pathway Kole of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Kole of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Xultipe Sclerosis Signaling Pathway		Ś	4	X 0 X 0							
Arburg Effect Signaling Pathway Nound Healing Signaling Pathway Nound Healing Signaling Pathway Varburg Effect Signaling Pathway Acute Phase Response Signaling Pathway Cachexia Signaling Pathway Purport of Inorganic cations/anions and amino acids/oligopeptides Dendritic Cell Maturation Cachexia Signaling Pathway Pulmonary Fibrosis Idiopathic Signaling Pathway Signaling Pathway Nouce I Signaling Pathway Nouce I Signaling Pathway Neatore I Signaling Pathway <td< td=""><td></td><td>way</td><td>trol</td><td>e vs e vs htrol trol e vs e vs</td><td></td><td></td><td></td></td<>		way	trol	e vs e vs htrol trol e vs e vs							
wight		path	Col								
Warburg Effect Signaling Pathway Nound Healing Signaling Pathway Response to elevated platelet cytosolic Ca2+ Pathorge Induced Cytokine Storm Signaling Pathway Acute Phase Response Signaling VAf/MAP Kinase cascade Fumor Microenvironment Pathway Pathorge Induced Cytokine Storm Signaling Pathway Cachexia Signaling Pathway Pathorge Induced Cytokine Storm Signaling Pathway Fransport of Inorganic cations/anions and amino acids/oligopeptides Dendritic Cell Maturation Cachexia Signaling Pathway Pulmonary Fibrosis Idiopathic Signaling Pathway Communication between Innate and Adaptive Immune Cells Interleukin-10 signaling Coll of Tissue Factor in Cancer S alpha () signaling Pathway Signaling Pathway Neutrophil degranulation tepatic Fibrosis Signaling Pathway Neutrophil degranulation tepatic Cholestais Tepatic Cholestais Tepatic Signaling Pathway Matcrophage Classical Activation Signaling Pathway Neutrophil degranulation tepatic Fibrosis Signaling Pathway Macrophage Classical Activation Signaling Pathway Macrophage Classica		cal	s > co	aleso vs_vs_ aleso aleso							
Arburg Effect Signaling Pathway Nound Healing Signaling Pathway Response to elevated platelet cytosolic Ca2+ Pathogen Induced Cytokine Storm Signaling Pathway Acute Phase Response Signaling VAF/MAP kinase cascade Jumor Microenvironment Pathway Valmonary Fibrosis Idiopathic Signaling Pathway Valmonary Fibrosis Idiopathic Signaling Pathway Pathogen Induced Cytokine Signaling Pathway Variansport of horganic cations/anions and amino acids/oligopeptides Dendritic Cell Maturation Cachexia Signaling Pathway Pulmonary Fibrosis Idiopathic Signaling Pathway Iransport of bile salts and organic acids, metal ions and amine compounds Communication between Innate and Adaptive Immune Cells Interleukin-10 signaling L-17 Signaling Vale of Tissue Factor in Cancer G alpha (i) signaling Pathway Syncation Signaling Pathway Veutrophil degranulation Hepatic Fibrosis Signaling Pathway Vatim Signaling Pathway Vultiple Sclerosis Signaling Pathway Vorteoplats in Rheumatoid Arthr		iu	Cute	onva cove onva onva cove							
T Warburg Effect Signaling Pathway Wound Healing Signaling Pathway Response to elevated platelet cytosolic Ca2+ Pathogen Induced Cytokine Storm Signaling Pathway Acute Phase Response Signaling VAF/MAP kinase cascade Furmor Microenvironment Pathway Pondritic Cell Maturation Cachexia Signaling Pathway Puthonary Fibrosis Idiopathic Signaling Pathway Puthonary Fibrosis Idiopathic Signaling Pathway Communication between Innate and Adaptive Immune Cells Inteleukin-10 signaling Note of Tissue Factor in Cancer Salpha () signaling Pathway Pathole Syndrome Signaling Pathway Solar Signaling Pathway Vultiples Scleptons Signaling Pathway Vultiple Scleptons Signaling Pathway Vator Signaling Pathway Vultiple Scleptons Signaling Pathway Vultiples Cleptos Signal		Ö	¥ C	Ŭ Ŭ 🖱 🗸 Ŭ Ŭ 🖱 M M M M RE RE RE RE							
Warburg Effect signaling Pathway Nound Healing Signaling Pathway Response to elevated platelet cytosolic Ca2+ Pathogen Induced Cytokine Storm Signaling Pathway Acute Phase Response Signaling Akf/MAP kinase cascade Fumor Microenvironment Pathway Transport of Inorganic cations/anions and amino acids/oligopeptides Dendritic Cell Maturation Cachexia Signaling Pathway Pulmonary Fibrosis Idiopathic Signaling Pathway Salpa (0) signaling Pathway Neutrophil degranulation Hepatic Fibrosis Signaling Pathway Multiple Sclerosis Signaling Pathway Macrophage Classical Activation Signaling Pathway Nacrophage Classical Activation Signaling Pathway Nacrophage Classical Activation Signaling Pathway Serotonin Receptor Signaling Pathway	AL 1	T									
Wound Healing Signaling Pathway Response to elevated platelet cytosolic Ca2+ Pathogen Induced Cytokine Storm Signaling Pathway Acute Phase Response Signaling VAF/MAP kinase cascade Transport of inorganic cations/anions and amino acids/oligopeptides Dendritic Cell Maturation Cachexia Signaling Pathway Pulmonary Fibrosis Idiopathic Signaling Pathway Transport of bile salts and organic acids, metal ions and amine compounds Pulmonary Fibrosis Idiopathic Signaling Pathway Transport of bile salts and organic acids, metal ions and amine compounds Communication between Innate and Adaptive Immune Cells Interleukin-10 signaling L-17 Signaling Bole of Tissue Factor in Cancer G alpha (i) signalling events Tritable Bowel Syndrome Signaling Pathway Silycation Signaling Pathway Autism Signaling Pathway Autism Signaling Pathway Autism Signaling Pathway Macrophage Classical Activation Signaling Pathway Macrophage Classical Activation Signaling Pathway Seorotonin Receptor Signaling Pathway	Warburg Effect Signaling P	athway									
Vesponse to elevate platelet cytobolic Ca2+ Pathogen Induced Cytobolic Storm Signaling Pathway Acute Phase Response Signaling XAF/MAP kinase cascade Fumor Microenvironment Pathway Transport of inorganic cations/anions and amino acids/oligopeptides Dendritic Cell Maturation Cachexia Signaling Pathway Pulmonary Fibrosis Idiopathic Signaling Pathway Pransport of bile salts and organic acids, metal ions and amine compounds Communication between Innate and Adaptive Immune Cells Interleukin-10 signaling L-17 Signaling Bole of Tissue Factor in Cancer G alpha (i) signalling events Trittable Bowel Syndrome Signaling Pathway Slycation Signaling Pathway Petatic Cholestasis Hepatic Cholestasis Hepatic Fibrosis Signaling Pathway Multiple Sclerosis Signaling Pathway Macrophage Classical Activation Signaling Pathway Serotonin Receptor Signaling Pothesballage Pothesballage Pathway Pathway Pathway Pathway Signaling Pathway Pathway Pathway Pathway Pathway Pathway Pathway Pathway Pathway Pathwa	Wound Healing Signaling	Pathway									
Adding Print Response Signaling Pathway Akute Phase Response Signaling AF/MAP kinase cascade Fumor Microenvironment Pathway Transport of inorganic cations/anions and amino acids/oligopeptides Dendritic Cell Maturation Cachexia Signaling Pathway Pulmonary Fibrosis Idiopathic Signaling Pathway Sole of Tissue Factor in Cancer S alpha () signalling events rritable Bowel Syndrome Signaling Pathway Neutrophil degranulation Hepatic Cholestasis Hepatic Fibrosis Signaling Pathway Autims Signaling Pathway Multiple Sclerosis Signaling Pathway Macrophage Classical Activation Signaling Pathway Sectonin Receptor Signaling Pathway Macrophage Classical Activation Signaling Pathway Sectonin Receptor Signaling Pathway Sectonin Receptor Signaling Pathway Secton Signaling Pathway Secton Signaling Pathway	Response to elevated plate Pathogon Induced Cutokin	elet cytosolic Ca2+									
Active fraise cascade Fumor Microenvironment Pathway Fransport of inorganic cations/anions and amino acids/oligopeptides Dendritic Cell Maturation Cachexia Signaling Pathway Pulmonary Fibrosis Idiopathic Signaling Pathway Transport of bile salts and organic acids, metal ions and amine compounds Communication between Innate and Adaptive Immune Cells Interleukin-10 signaling L-17 Signaling Role of Tissue Factor in Cancer Salpha () signalling events rritable Bowel Syndrome Signaling Pathway Sdycation Signaling Pathway Autims Signaling Pathway Multiple Sclerosis Signaling Pathway Multiple Sclerosis Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Seventonin Receptor Signaling Pathway	Acute Phase Response Sig	naling	ay and a second s								
GU/MCN INITED Cumor Nincone viscoment Pathway Fransport of inorganic cations/anions and amino acids/oligopeptides Dendritic Cell Maturation Cachexia Signaling Pathway Pulmonary Fibrosis Idiopathic Signaling Pathway Iransport of bile salts and organic acids, metal ions and amine compounds Communication between Innate and Adaptive Immune Cells Interleukin-10 signaling L-17 Signaling Role of Tissue Factor in Cancer Salpha () signaling events rritable Bowel Syndrome Signaling Pathway Slycation Signaling Pathway Autism Signaling Pathway Autism Signaling Pathway Mutiple Sclerosis Signaling Pathway Mutiple Sclerosis Signaling Pathway Mutiple Sclerosis Signaling Pathway Matrophage Classical Activation Signaling Pathway Role of Stoebolasts in Rheumatoid Arthritis Signaling Pathway Serotonin Receptor Signaling Pathway Mutiple Sclerosis Signaling Pathway Role of Destoeblast in Rheumatoid Arthritis Signaling Pathway	RAF/MAP kinase cascade	namy									
Transport of inorganic cations/anions and amino acids/oligopeptides Dendritic Cell Maturation Cachexia Signaling Pathway Pulmonary Fibrosis Idiopathic Signaling Pathway Irransport of bile salts and organic acids, metal ions and amine compounds Communication between Innate and Adaptive Immune Cells Thereukin-10 signaling L-17 Signaling Role of Tissue Factor in Cancer S alpha (i) signalling events Trittable Bowel Syndrome Signaling Pathway Slycation Signaling Pathway Neutrophil degranulation Leptatic Fibrosis Signaling Pathway Autism Signaling Pathway Multiple Sclerosis Signaling Pathway Multiple Sclerosis Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Seloton In Receptor Signaling Pathway	Tumor Microenvironment	Pathway									
Dendritic Cell Maturation Cachexia Signaling Pathway Pulmonary Fibrosis Idiopathic Signaling Pathway Transport of bile salts and organic acids, metal ions and amine compounds Communication between Innate and Adaptive Immune Cells Interleukin-10 signaling Role of Tissue Factor in Cancer G alpha (i) signalling events rritable Bowel Syndrome Signaling Pathway Silycation Signaling Pathway Neutrophil degranulation Hepatic Cholestasis Hepatic Fibrosis Signaling Pathway Autism Signaling Pathway Multiple Sclerosis Signaling Pathway Multiple Sclerosis Signaling Pathway Macrophage Classical Activation Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Proteasomal PSMD10 Signaling Pathway	Transport of inorganic cati	ons/anions and amino ac	ids/oligopentides		•						
Cachexia Signaling Pathway Pulmonary Fibrosis Idiopathic Signaling Pathway Iransport of bile salts and organic acids, metal ions and amine compounds Communication between Innate and Adaptive Immune Cells Interleukin-10 signaling L-17 Signaling Role of Tissue Factor in Cancer S alpha (i) signalling events Irritable Bowel Syndrome Signaling Pathway Slycation Signaling Pathway Neutrophil degranulation Hepatic Cholestasis Hepatic Fibrosis Signaling Pathway Multiple Sclerosis Signaling Pathway Multiple Sclerosis Signaling Pathway Role of Otseoblasts in Rheumatoid Arthritis Signaling Pathway Sele of Otseoblasts in Rheumatoid Arthritis Signaling Pathway Patters Signaling Proteasomal PSMD10 Signaling Pathway	Dendritic Cell Maturation										
Pulmonary Fibrosis Idiopathic Signaling Pathway Iransport of bile salts and organic acids, metal ions and amine compounds Communication between Innate and Adaptive Immune Cells Interleukin-10 signaling L-17 Signaling Role of Tissue Factor in Cancer S alpha (i) signalling Pathway Neutrophil degranulation Hepatic Cholestasis Hepatic Fibrosis Signaling Pathway Autism Signaling Pathway Multiple Sclerosis Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Proteasomal PSMD10 Signaling Proteasomal PSMD10 Signaling Pathway Proteasomal PSMD10 Signaling	Cachexia Signaling Pathwa	v									
Iransport of bile salts and organic acids, metal ions and amine compounds Communication between Innate and Adaptive Immune Cells nterleukin-10 signaling L-17 Signaling Role of Tissue Factor in Cancer G alpha (i) signalling events rritable Bowel Syndrome Signaling Pathway Slycation Signaling Pathway Neutrophil degranulation Hepatic Cholestasis Hepatic Fibrosis Signaling Pathway Autism Signaling Pathway Multiple Sclerosis Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Bole of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Proteasomal PSMD10 Signaling Pathway	Pulmonary Fibrosis Idiopat	thic Signaling Pathway									
Communication between Innate and Adaptive Immune Cells nterleukin-10 signaling L-17 Signaling Role of Tissue Factor in Cancer S alpha (i) signalling events rritable Bowel Syndrome Signaling Pathway Slycation Signaling Pathway Neutrophil degranulation Hepatic Cholestasis Hepatic Fibrosis Signaling Pathway Autism Signaling Pathway Multiple Sclerosis Signaling Pathway Multiple Sclerosis Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Boole of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Proteasomal PSMD10 Signaling Pathway	Transport of bile salts and	organic acids, metal ions	and amine compounds		-						
nterleukin-10 signaling L-17 Signaling Role of Tissue Factor in Cancer S alpha (i) signalling events rritable Bowel Syndrome Signaling Pathway Slycation Signaling Pathway Neutrophil degranulation Hepatic Cholestasis Hepatic Fibrosis Signaling Pathway Autism Signaling Pathway Multiple Sclerosis Signaling Pathway Multiple Sclerosis Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Boole of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Boole of Steoblasts in Rheumatoid Arthritis Signaling Pathway Broteasomal PSMD10 Signaling Pathway	Communication between	Innate and Adaptive Imm	une Cells								
L-17 Signaling Role of Tissue Factor in Cancer G alpha (i) signalling events rritable Bowel Syndrome Signaling Pathway Slycation Signaling Pathway Neutrophil degranulation Hepatic Cholestasis Hepatic Fibrosis Signaling Pathway Autism Signaling Pathway Multiple Sclerosis Signaling Pathway Multiple Sclerosis Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Boole of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Boole of Steoblasts in Rheumatoid Arthritis Signaling Pathway Broteasomal PSMD10 Signaling Pathway	nterleukin-10 signaling										
Role of Tissue Factor in Cancer 5 alpha (i) signalling events rritable Bowel Syndrome Signaling Pathway Slycation Signaling Pathway Neutrophil degranulation Hepatic Fibrosis Signaling Pathway Autism Signaling Pathway Multiple Sclerosis Signaling Pathway Multiple Sclerosis Signaling Pathway Macrophage Classical Activation Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Serotonin Receptor Signaling Proteasomal PSMD10 Signaling Pathway	L-17 Signaling										
G alpha (i) signalling events rritable Bowel Syndrome Signaling Pathway Slycation Signaling Pathway Neutrophil degranulation Hepatic Fibrosis Signaling Pathway Autism Signaling Pathway Multiple Sclerosis Signaling Pathway Multiple Sclerosis Signaling Pathway Macrophage Classical Activation Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Serotonin Receptor Signaling Proteasomal PSMD10 Signaling Pathway	Role of Tissue Factor in Ca	ncer	_								
rritable Bowel Syndrome Signaling Pathway Slycation Signaling Pathway Neutrophil degranulation Hepatic Cholestasis Hepatic Fibrosis Signaling Pathway Autism Signaling Pathway Multiple Sclerosis Signaling Pathway Multiple Sclerosis Signaling Pathway Macrophage Classical Activation Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Serotonin Receptor Signaling Proteasomal PSMD10 Signaling Pathway	G alpha (i) signalling event	ts			-						
Slycation Signaling Pathway Neutrophil degranulation Hepatic Cholestasis Hepatic Fibrosis Signaling Pathway Autism Signaling Pathway Multiple Sclerosis Signaling Pathway Multiple Sclerosis Signaling Pathway Macrophage Classical Activation Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Serotonin Receptor Signaling Proteasomal PSMD10 Signaling Pathway	rritable Bowel Syndrome S	Signaling Pathway									
Neutrophil degranulation Hepatic Cholestasis Hepatic Fibrosis Signaling Pathway Autism Signaling Pathway Multiple Sclerosis Signaling Pathway Macrophage Classical Activation Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Serotonin Receptor Signaling Proteasomal PSMD10 Signaling Pathway	Glycation Signaling Pathwa	ау									
Hepatic Cholestasis Hepatic Fibrosis Signaling Pathway Hepatic Fibrosis Signaling Pathway Hepatic Sclerosis Signaling Pathway Multiple Sclerosis Signaling Pathway Hepatic Sclerosis Signaling Pathway Macrophage Classical Activation Signaling Pathway Hepathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Hepathway Serotonin Receptor Signaling Hepathway Proteasomal PSMD10 Signaling Pathway Hepathway	Neutrophil degranulation	leutrophil degranulation									
Autism Signaling Pathway Autism Signaling Pathway Multiple Sclerosis Signaling Pathway Macrophage Classical Activation Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Serotonin Receptor Signaling Proteasomal PSMD10 Signaling Pathway	lepatic Cholestasis										
Autom Signaling Pathway Multiple Sclerosis Signaling Pathway Macrophage Classical Activation Signaling Pathway Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Serotonin Receptor Signaling Proteasomal PSMD10 Signaling Pathway	Hepatic Fibrosis Signaling	Pathway									
Macrophage Classical Activation Signaling Pathway Macrophage Classical Activation Signaling Pathway Serotonin Receptor Signaling Proteasomal PSMD10 Signaling Pathway	Autism Signaling Fathway Multiple Sclerosis Signalin	a Pathway									
Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway Serotonin Receptor Signaling Proteasomal PSMD10 Signaling Pathway	Macrophage Classical Activ	y ration Signaling Pathway									
Serotonin Receptor Signaling Proteasomal PSMD10 Signaling Pathway	Role of Osteoblasts in Rhe	umatoid Arthritis Signalin	g Pathway								
roteasomal PSMD10 Signaling Pathway	Serotonin Receptor Signal	ina									
	Proteasomal PSMD10 Sign	aling Pathway									

Filtered canonical pathway

Upstream regulator comparison

7/10/2025

Hide

-Prediction Legend-

Decreased measurement O

Predicted activation

Predicted Relationships

 Findings inconsistent with state of downstream

Dashed lines = indirect relationship olid lines = direct relationship

____ Leads to activation

Leads to inhibition

------ Effect not predicted

molecule

Predicted inhibition Glow Indicates activity 👝 hen opposite

re extreme in datase Increased measurement O

measurement

0

LCN2

PDGFA

PDGFB

Sample to Insight

Better Care with Better Knowledge

若有需要進一步的資訊或在使用軟體上遇到問題歡迎聯繫以下窗口: 席佩妤 資深業務專員 CleoHsi@gga.asia 02-2795 1777 #3014 熊嘉妮 專案副理 ChristineHsiung@gga.asia 02-2795 1777 #3028

Bioinfo@GGA.ASIA