

生醫研究中的資料再利用

Chia-Lang Hsu (許家郎), Ph.D.

Department of Medical Research

National Taiwan University Hospital (NTUH)

Open data - Why make data available?

Accelerated Discovery

Openly available datasets enable researchers to build upon existing work, validate each other's findings, and accelerate scientific discovery without repeating costly and time-consuming data collection.

Helps ensure we don't miss breakthroughs

There are countless ways to analyze any given dataset. What appears as noise to one researcher might represent a key discovery to another, depending on their perspective or analytical approach.

Improved Integrity and Reproducibility

When the underlying data are accessible, researchers can verify one another's work and ensure that conclusions rest on a solid foundation.

Accountability and Transparency

Making data publicly available promotes transparency and accountability, and enables informed civic participation in policy decisions.

DATA AVAILABILITY

FAIR your data

Data sharing has been common practice in genetics and genomics research for decades, accelerating biomedical discoveries and improving human health. Sustained funding to the National Institutes of Health (NIH) will ensure that genetic and genomic data remain accessible to researchers in ways that advance science and also protect the privacy of participants and minimize the stigmatization of groups of people.

Large-Scale Data is Transformative

Researchers use biobanks – large collections of biological samples and health information – and other research resources with shared genetic and genomic data from large numbers of diverse research participants to investigate new scientific questions. Open data empowers investigators with the ability to pool data, effectively increasing the sample size for robust studies and promoting reproducible science. Reusing existing data this way helps scientists learn more about the health of individuals and populations and drives medical innovations.

What is Data Sharing?

Data sharing is the practice of making de-identified sociodemographic, genomic, and medical record data used for research available to other investigators. Sharing research findings benefits the scientific community, fosters collaboration, and increases transparency with the public. Since science progresses by building upon the work of others and innovates from prior discoveries, ethical data sharing accelerates knowledge.¹

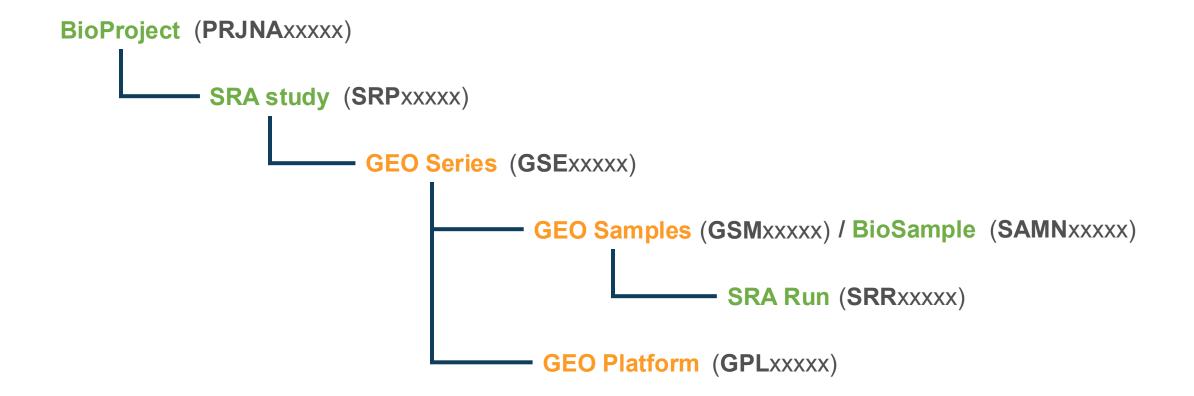
'Data Availability Statements' in a research paper

- An article's data availability statement lets a reader know where and how to access data that support the results and analysis.
- Data availability statements are important because they support validation,
 reuse and citation of research data.

Major repositories for public high-throughput data

Repository type	Repository names	Typical data type	Note
Public repositories for non- sensitive data	GEO, ENA, SRA, ArrayExpress	Bulk & single-cell RNA-seq, microarray, ChIP-seq, ATAC-seq	Processed or raw expression data, no identifiable human info
Public repositories for sensitive data	dbGAP, EGA, JGA	Human WGS, WES, genotype, clinical / phenotype, RNA-seq	Require DAC approval, human identifiable data
Project-specific repositories	GDC (TCGA, TARGET), ICGC	Cancer multi-omics (WES, RNA-seq, methylation, clinical)	NIH- or consortium-based data portals
Single-cell and spatial data portals	Human Cell Atlas, Single Cell Portal	scRNA-seq	
Proteomics repositories	PRIDE, PeptideAtlas	Mass spectrometry proteomics	Processed protein identification and quantification
Metabolomics repositories	MetaboLights, Metabolomics Workbench	LC-MS, GC-MS metabolomics	

GEO & SRA



- A global repository jointly maintained by NCBI, EBI, and DDBJ.
- Stores <u>RAW SEQUENCING</u> data (FASTQ) generated by highthroughput technologies.
- Enables users to re-analyze data using their own pipelines or updated reference genomes.

- A public repository maintained by NCBI for sharing gene expression and functional genomics data.
- Stores <u>PROCESSED or NORMALIZED</u> data such as expression matrices and sample annotations.
- Common data types: microarray, RNA-seq, ChIP-seq, ATAC-seq, and single-cell RNA-seq.

Relationship between SRA and GEO

A single GSE may correspond to multiple GSMs, and each GSM can be linked to one or more SRRs.

Series GSE255949 Query DataSets for GSE255949 Status Public on Jul 05, 2024 Title Gene expression of alveolar macrophage in mice with AT2 cell-specific Cpt1a Organism Mus musculus Expression profiling by high throughput sequencing Experiment type Summary Carnitine palmitoyltransferase 1a (CPT1a) is the key regulator of mitochondrial long-chain fatty acid beta-oxidation (LCFAO). However, the functional significance of AT2 cell-specific LCFAO at baseline and during acute lung injury (ALI) is not fully understood. In this study, Murine models of AT2 cell-specific Cpt1a deletion were generated for investigating the role of CPT1a in regulating AT2 cell function and the severity of lipopolysaccharide-induced murine ALI models. Overall design To investigate whether impaired LCFAO in AT2 cells regulates the responses of alveolar macrophages, we also isolated alveolar macrophages from Cpt1a-KO and control mice for trancriptomic analysis. Contributor(s) Chung K Citation(s) Chung KP, Cheng CN, Chen YJ, Hsu CL et al. Alveolar epithelial cells mitigate neutrophilic inflammation in lung injury through regulating mitochondrial fatty acid oxidation. Nat Commun 2024 Aug 22;15(1):7241. PMID: 39174557 NIH grant(s) Add grant Feb 16, 2024 Submission date Sep 27, 2024 Last update date Contact name Chia-Lang Hsu E-mail(s) chialanghsu@ntuh.gov.tw Organization name National Taiwan University Hospital Department of Medical Research Department Street address No. 7, Zhongshan S. Rd. City Taipei ZIP/Postal code 100 Country Taiwan GPL24247 Illumina NovaSeq 6000 (Mus musculus) Platforms (1) Samples (11) GSM8083254 Alveolar macrophages from control mouse (sample #1) GSM8083255 Alveolar macrophages from control mouse (sample #2) GSM8083256 Alveolar macrophages from control mouse (sample #3) Relations BioProject PRJNA1077286 Download family Format SOFT formatted family file(s) SOFT [2] MINIML ? MINIML formatted family file(s) TXT 🕐 Series Matrix File(s) Supplementary file Size Download File type/resource GSE255949_read_count_macrophage_baseline.txt.gz 702.7 Kb (ftp)(http) TXT SRA Run Selector 2

Next page

Raw data are availal

Sample GSM8083254 Query DataSets for GSM8083254

Status Public on Jul 05, 2024

Title Alveolar macrophages from control mouse (sample #1)

Sample type SRA

Source name Lung

Organism Mus musculus
Characteristics tissue: Lung

cell type: Primary alveolar macrophages

genotype: Sftpc-CreERt2(+/-)

Extracted molecule total RNA

Extraction protocol Cell as input and lysis accroding to manufacturer's instructions of SMART-Seq

Stranded Kit (Takara)

Libraries were prepared using the SMART-Seq Stranded Kit (Takara)

Library strategy RNA-Seq Library source transcriptomic

Library selection cDNA

Instrument model Illumina NovaSeq 6000

Description N11301_01

Data processing Trimming adaptor sequences and removing reads of low quality were

performed by cutadapt (v2.4).

Quantified reads were aligned to the mouse genome (GRCm38) by STAR (v2.7.2a) and then gene-level read counts were generated based on the

annotations of Gencode (vM25)

Assembly: GRCm38

Supplementary files format and content: tab-delimited text files include read

count values for each sample

Submission date Feb 16, 2024 Last update date Jul 05, 2024 Contact name Chia-Lang Hsu

E-mail(s) chialanghsu@ntuh.gov.tw

Organization name National Taiwan University Hospital Department Department of Medical Research

Street address No. 7, Zhongshan S. Rd.

City Taipei
ZIP/Postal code 100
Country Taiwan

Platform ID GPL24247

Series (1) GSE255949 Gene expression of alveolar macrophage in mice with AT2 cell-

specific Cpt1a deletion

Relations

BioSample SAMN39964386 SRA SRX23642287

Supplementary data files not provided

SRA Run Selector 2

Raw data are available in SRA

Accession PRJNA107728	Q Search
Common Fields	
BioProject	PRJNA1077286
Consent	PUBLIC
Assay Type	RNA-Seq
AvgSpotLen	302
cell_type	Primary alveolar macrophages
Center Name	DEPARTMENT OF MEDICAL RESEARCH, NATIONAL TAIWAN UNIVERSITY HOSPITAL
Collection_Date	missing
DATASTORE filetype	FASTQ, RUN.ZQ, SRA
DATASTORE provider	GS, NCBI, S3

Select	Runs	Bytes	Bases	Download	Cloud Data Delivery	Computing
Total	11	56.38 Gb	179.26 G	Metadata or Accession List		
Selected	0	0	0	Metadata or Accession List or JWT Cart	Deliver Data	Galaxy

5	$ Project \rightarrow Sample \rightarrow Experiment \rightarrow Run $											
	☑ ×	▲ Run	♦ BioSample	Bases Bases	♦ Bytes	♦ Experiment	genotype ⁶	♣ Library Name		♦ Sample Name		
	_ 1	SRR27989218	SAMN39964376	22.04 G	6.93 Gb	SRX23642297	Cpt1a-KO (AT2 cell-specific)	GSM8083264	2024-02-16 12:57:00Z	GSM8083264		
	_ 2	SRR27989219	SAMN39964377	16.01 G	5.04 Gb	SRX23642296	Cpt1a-KO (AT2 cell-specific)	GSM8083263	2024-02-16 13:15:00Z	GSM8083263		
	_ 3	SRR27989220	SAMN39964378	16.06 G	5.03 Gb	SRX23642295	Cpt1a-KO (AT2 cell-specific)	GSM8083262	2024-02-16 12:46:00Z	GSM8083262		

Relations BioProject

Download family

GSE124226 RAW.tar

SOFT formatted family file(s)

MINIML formatted family file(s) Series Matrix File(s)

PRJNA516631

Supplementary file

Processed data included within Sample table

Format SOFT (2)

MINIML 7

Download File type/resource

TXT 2

38.6 Mb (http)(custom) TAR (of CEL)

Series GSE124226 Query DataSets for GSE124226 Sample GSM3526020 Query DataSets for GSM3526020 Status Public on Jan 24, 2019 Status Public on Jan 24, 2019 Gene Expression Data of Adipose Stem Cells from Normal-Weight Polycystic Title ASC-3004-control Ovary Syndrome Women vs. Controls Sample type RNA Organism Homo sapiens Experiment type Expression profiling by array Source name subcutaneous adipose tissue, control In vitro studies of subcutaneous (SC) abdominal adipose stem cells (ASC) from Summary women with polycystic ovary syndrome (PCOS) show altered ASC commitment Organism Homo sapiens to preadipocytes and differentiation to mature adipocytes related to Characteristics female type: control hyperandrogenism. Growth protocol Adipose stem cells were plated in 10 cm dish containing DMEM/10% FCS, The goal of the study is to use microarrays to examine whether SC abdominal 0.05 U/ml penicillin, 0.05 mg/ml streptomycin, 1.25 mg/ml fungizone and ASC gene expression are altered in normal-weight PCOS women and correlated with hyperandrogenemia and/or insulin resistance, which are prevalent clinical cultured at 37°C until cells reached confluency. pathologies of PCOS. Extracted molecule total RNA Extraction protocol Total cellular RNA was isolated using RNeasy mini kit (Qiagen, Carlsbad, CA) Overall design ASCs were isolated from SC adipose tissue following SC abdominal biopsy in 4 according to the manufacturer's protocol. PCOS women and 4 age and BMI matched controls for gene expression Label comparison. First generation of stem cells were cultured until cells reached Biotinylated cRNA were prepared according to the standard Affymetrix confluency and isolated for RNA extraction and hybridization on Affymetrix Label protocol protocol from 500 ng total RNA (Ambion MessageAmp™ Premier RNA microarrays. Amplification Protocol) Grant#: P50 HD071836 Title: Androgen excess as a mechanism for adipogenic dysfunction in PCOS Hybridization protocol Following fragmentation, 20 ug of cRNA were hybridized for 16 hr at 45C on women GeneChip Human U133 plus 2.0 Array. GeneChips were washed and stained Period: 2018-2022 in the Affymetrix Fluidics Station 450. Scan protocol GeneChips were scanned using the Affymetrix GeneChip Scanner. Contributor(s) Phan JD, Leung KL, Ding X, Li X, Chazenbalk GD Description Gene expression data from control ASCs of first pair-match Citation(s) Dumesic DA, Phan JD, Leung KL, Grogan TR et al. Adipose Insulin Resistance in Normal-Weight Women With Polycystic Ovary Syndrome. J Clin Endocrinol The data was analyzed with Partek Genomics suite using the RMA as Data processing Metab 2019 Jun 1;104(6):2171-2183. PMID: 30649347 normalization method. Analyze with GEO2R Dec 20, 2018 Submission date Last update date Jan 24, 2019 Contact name Greogorio Chazenbalk Submission date Dec 20, 2018 Last update date Mar 25, 2019 E-mail(s) gchazenbalk@mednet.ucla.edu Contact name Greogorio Chazenbalk Phone 1-818-599-4175 E-mail(s) gchazenbalk@mednet.ucla.edu Organization name University of California, Los Angeles 1-818-599-4175 Phone Department Obstetrics and Gynecology Organization name University of California, Los Angeles Street address 10833 Le Conte Ave Department Obstetrics and Gynecology City Los Angeles Street address 10833 Le Conte Ave State/province California City Los Angeles ZIP/Postal code 90095 California State/province Country USA ZIP/Postal code 90095 USA Country Platform ID GPL570 GSE124226 Gene Expression Data of Adipose Stem Cells from Normal-Series (1) Platforms (1) GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array Weight Polycystic Ovary Syndrome Women vs. Controls GSM3526020 ASC-3004-control Samples (8) GSM3526021 ASC-3006-PCOS Data table header descriptions GSM3526022 ASC-3010-PCOS

ID_REF

VALUE RMA normalized log2 transformed signal intensity

Data table	
ID_REF	VALUE
1007_s_at	9.54885
1053_at	8.61334
117_at	6.20375
121_at	9.09007
1255_g_at	3.8519
1294 at	7.95796

Extract FASTQ-files from SRA-accessions using SRA Toolkit

https://github.com/ncbi/sra-tools

The NCBI SRA (Sequence Read Archive)

Contact:

email: sra@ncbi.nlm.nih.gov

Download

Visit our download page for pre-built binaries.

Change Log

Please check the CHANGES.md file for change history.

SRA Toolkit complies with NCBI Web Policies

Please visit our wiki for information on using, configuring, and building the toolkit.

01. Downloading SRA Toolkit

Andrew Klymenko edited this page on Mar 20 · 40 revisions

NCBI SRA Toolkit

Below are the latest releases of various tools and release checksum file.

SRA Toolkit

Compiled binaries/install scripts of March 18, 2025, version 3.2.1:

- AlmaLinux 64 bit architecture non-sudo tar archive
- Ubuntu Linux 64 bit architecture non-sudo tar archive
- Cloud apt-get install script for Debian and Ubuntu requires sudo permissions
- Cloud yum install script for AlmaLinux requires sudo permissions
- MacOS x86 64 bit architecture
- MacOS Arm64 bit architecture
- · MS Windows 64 bit architecture
- Docker image repository
- md5 checksums

SRA Toolkit - Step 1: download datasets

prefetch retrieves SRA files (.sra) from a given accession ID (SRR, SRX, SRP, etc.)

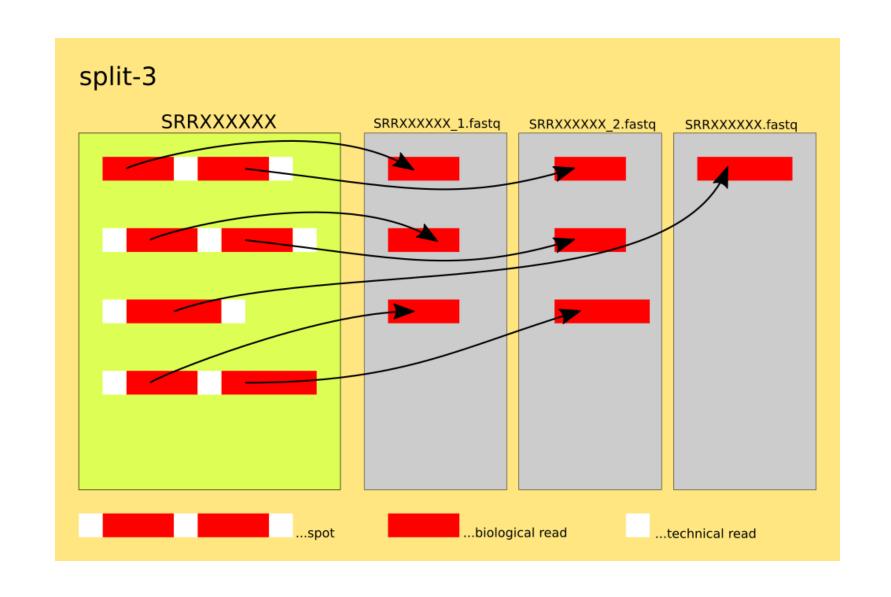
```
# Example: download a single run
prefetch SRR1234567

# Example: download multiple runs listed in a text file
prefetch --option-file SRR_AccList.txt

# Example: specify download directory
prefetch --output-directory /data/SRA SRR1234567
```

SRA Toolkit – Step 2: convert SRA to FASTQ files

After downloading .sra, convert to FASTQ format using fasterq-dump


```
# Basic conversion
fasterq-dump SRR1234567

# Specify output directory
fasterq-dump SRR1234567 -0 /data/fastq/

# Use multi-threading for large files
fasterq-dump SRR1234567 -e 8 -0 /data/fastq/
```

For spots having 2 reads (paired-end reads), the reads are written into the *_1.fastq and *_2.fastq files. Unmated reads are placed in *.fastq.

How the fasterq-dump work

Analyzed processed GEO data using GEO2R

▼ Samples

Series GSE124226 Query DataSets for GSE124226

Status Public on Jan 24, 2019

Title Gene Expression Data of Adipose Stem Cells from Normal-Weight Polycystic

Ovary Syndrome Women vs. Controls

Organism Homo sapiens

Experiment type Expression profiling by array

Summary In vitro studies of subcutaneous (SC) abdominal adipose stem cells (ASC) from

women with polycystic ovary syndrome (PCOS) show altered ASC commitment to preadipocytes and differentiation to mature adipocytes related to

hyperandrogenism.

The goal of the study is to use microarrays to examine whether SC abdominal ASC gene expression are altered in normal-weight PCOS women and correlated

with hyperandrogenemia and/or insulin resistance, which are prevalent clinical

pathologies of PCOS.

Overall design ASCs were isolated from SC adipose tissue following SC abdominal biopsy in 4

PCOS women and 4 age and BMI matched controls for gene expression comparison. First generation of stem cells were cultured until cells reached confluency and isolated for RNA extraction and hybridization on Affymetrix

microarrays.

Grant#: P50 HD071836

Title: Androgen excess as a mechanism for adipogenic dysfunction in PCOS

women

Period: 2018-2022

Contributor(s) Phan JD, Leung KL, Ding X, Li X, Chazenbalk GD

Citation(s) Dumesic DA, Phan JD, Leung KL, Grogan TR et al. Adipose Insulin Resistance in

Normal-Weight Women With Polycystic Ovary Syndrome. J Clin Endocrinol

Metab 2019 Jun 1;104(6):2171-2183. PMID: 30649347

Analyze with GEO2R

Use GEO2R to compare two or more groups of Samples in order to identify genes that are differentially expressed across experimental conditions. Results are presented as a table of genes ordered by significance. Full instructions

Selected 0 out of 8 samples

GEO accession GSE124226

Gene Expression Data of Adipose Stem Cells from Normal-Weight Polycystic Ovary Syndrome Women vs. Controls

▶ Define groups

Samples		P Define groups	P Define groups			
				Columns		
Group	Accession	Φ Title	Source name	Female type		
-	GSM3526020	ASC-3004-control	subcutaneous adipose tissue, control	control		
-	GSM3526021	ASC-3006-PCOS	subcutaneous adipose tissue, PCOS	PCOS		
-	GSM3526022	ASC-3010-PCOS	subcutaneous adipose tissue, PCOS	PCOS		
-	GSM3526023	ASC-3019-PCOS	subcutaneous adipose tissue, PCOS	PCOS		
-	GSM3526024	ASC-3027-control	subcutaneous adipose tissue, control	control		
-	GSM3526025	ASC-3034-control	subcutaneous adipose tissue, control	control		
-	GSM3526026	ASC-3036-control	subcutaneous adipose tissue, control	control		
-	GSM3526027	ASC-3042-PCOS	subcutaneous adipose tissue, PCOS	PCOS		

GEO2R Options Profile graph R script

Quick start

- Specify a GEO Series accession and a Platform if prompted.
- · Click 'Define groups' and enter names for the groups of Samples you plan to compare, e.g., test and control.
- Assign Samples to each group. Highlight Sample rows then click the group name to assign those Samples to the group. Use the Sample metadata (title, source and characteristics) columns to help determine which Samples belong to which group.
- · Click 'Analyze' to perform the calculation with default settings.
- · You may change settings in the Options tab.

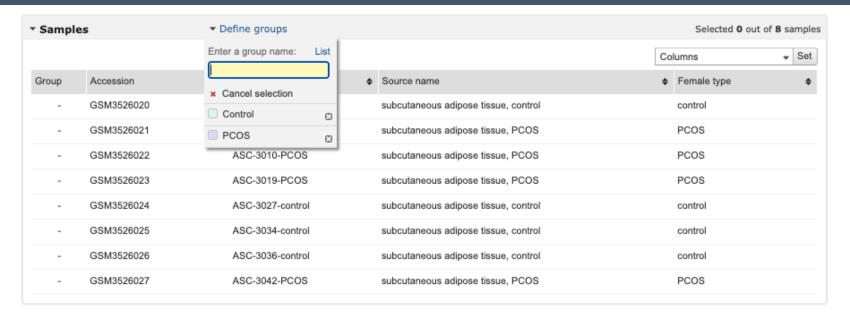
How to use

Analyze

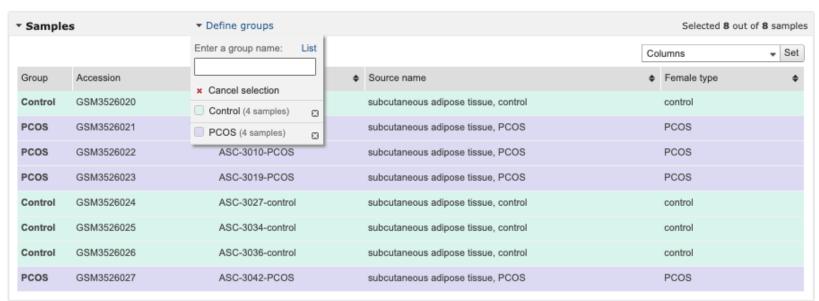
Functions of GEO2R

- Web-based analysis tool integrated into the NCBI GEO database.
- Allows users to compare two or more groups of samples within a GEO Series (GSE).
- Provides an interactive interface without requiring programming skills.
- Performs differential expression analysis using the limma package.
- Automatically normalizes and log-transforms data when appropriate.
- Enables sample grouping and visualization of group differences.
- Generates volcano plots and boxplots for quick exploratory analysis.
- Outputs a table of differentially expressed genes with logFC, p-values, and adjusted p-values (FDR).
- Allows downloading of results in text or Excel format.
- Provides links to annotation and gene information directly from the result table.
- Works primarily with processed microarray or RNA-seq expression matrices available in GEO.

GEO2R: To learn more, please read this page

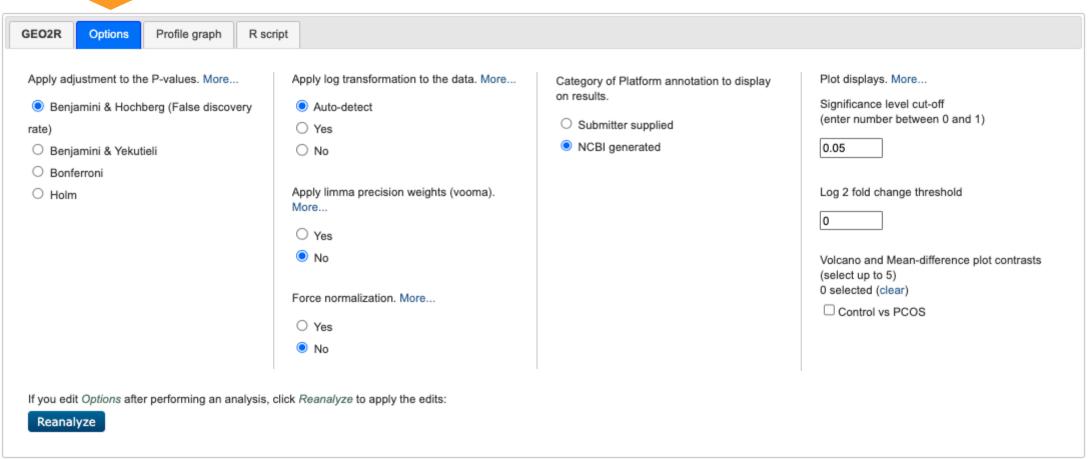

https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html

About GEO2R

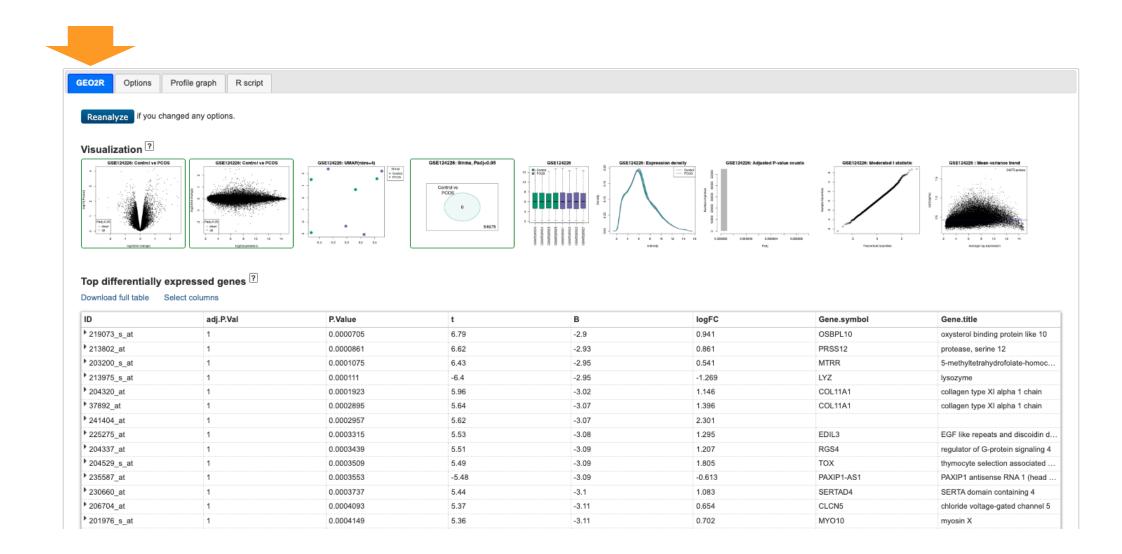

- Background
 - · RNA-seq data
 - · Microarray data
- How to use
 - Enter a Series accession number
 - · Define Sample groups
 - · Assign Samples to each group
 - · Perform the analysis
 - · Top differentially expressed genes
 - Visualization
 - Tutorial video
- · Edit options and features
 - Options
 - Profile graph
 - R script
- · Limitations and caveats
- More information and references
 - · Summary statistics
 - · General references
 - · Adjustment test references

GEO2R: define groups

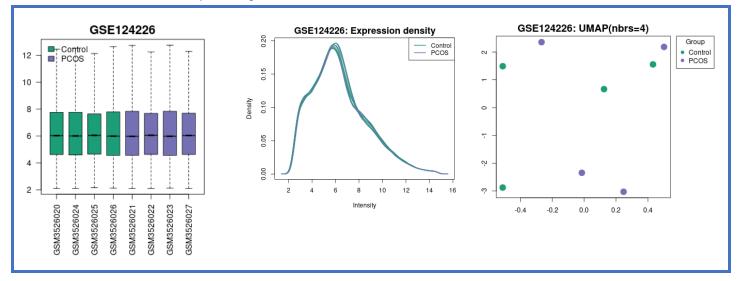
Step 1.



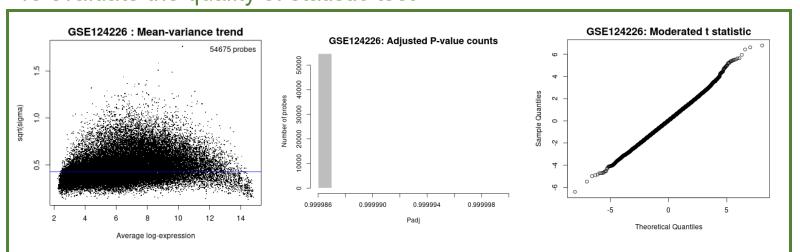
Step 2.

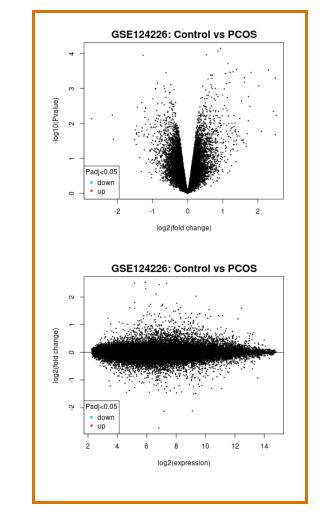


GEO2R: set options



GEO2R: analysis results


GEO2R: visualization


To evaluate the quality of data

To display the differentially expressed genes

GEO2R: gene expression exploration

GEO2R: automatically generated analysis script

```
GEO2R
                  Profile graph
                               R script
         Options
 # Version info: R 4.2.2, Biobase 2.58.0, GEOquery 2.66.0, limma 3.54.0
  # Differential expression analysis with limma
 library(GEOguery)
 library(limma)
 library(umap)
 # load series and platform data from GEO
 gset <- getGEO("GSE124226", GSEMatrix =TRUE, AnnotGPL=TRUE)</pre>
 if (length(gset) > 1) idx <- grep("GPL570", attr(gset, "names")) else idx <- 1
 gset <- gset[[idx]]</pre>
 # make proper column names to match toptable
 fvarLabels(gset) <- make.names(fvarLabels(gset))</pre>
 # group membership for all samples
 gsms <- "01110001"
 sml <- strsplit(gsms, split="")[[1]]</pre>
 # log2 transformation
 ex <- exprs(gset)
 qx <- as.numeric(quantile(ex, c(0., 0.25, 0.5, 0.75, 0.99, 1.0), na.rm=T))</pre>
 LogC \leftarrow (qx[5] > 100) | |
           (qx[6]-qx[1] > 50 && qx[2] > 0)
 if (LogC) { ex[which(ex <= 0)] <- NaN
   exprs(gset) <- log2(ex) }
 # assign samples to groups and set up design matrix
 gs <- factor(sml)
 groups <- make.names(c("Control","PCOS"))</pre>
 levels(gs) <- groups
 gset$group <- gs
 design <- model.matrix(~group + 0, gset)</pre>
 colnames(design) <- levels(gs)
 gset <- gset[complete.cases(exprs(gset)), ] # skip missing values</pre>
```

GEQquery (R package)

GEOquery

This is the released version of GEOquery; for the devel version, see GEOquery.

Get data from NCBI Gene Expression Omnibus (GEO)

Bioconductor version: Release (3.22)

The NCBI Gene Expression Omnibus (GEO) is a public repository of microarray data. Given the rich and varied nature of this resource, it is only natural to want to apply BioConductor tools to these data. GEOquery is the bridge between GEO and BioConductor.

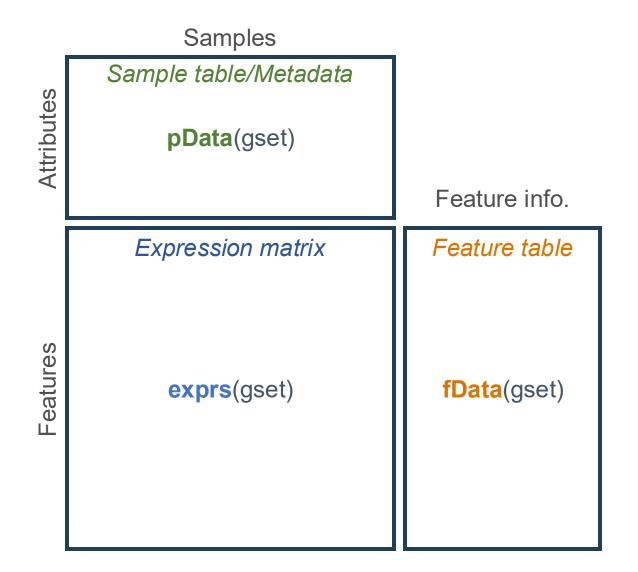
Author: Sean Davis [aut, cre]

Maintainer: Sean Davis <seandavi at gmail.com>

Citation (from within R, enter citation("GEOquery")):

Davis S, Meltzer P (2007). "GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor." *Bioinformatics*, **14**, 1846–1847. doi:10.1093/bioinformatics/btm254.

Installation


To install this package, start R (version "4.5") and enter:

```
if (!require("BiocManager", quietly = TRUE))
   install.packages("BiocManager")
BiocManager::install("GEOquery")
```

Fetch GEO processing data via GEOquery

```
library("GEOquery")
gseid <- "GSE124226"
gset <- getGEO(gseid, GSEMatrix =TRUE, AnnotGPL=TRUE)</pre>
gset1 <- getGEO(gseid, GSEMatrix =TRUE, AnnotGPL=FALSE)</pre>
class(gset)
#> 'list'
names(gset)
#> 'GSE124226 series matrix.txt.gz'
gset <- gset[[1]]
gset1 <- gset1[[1]]
class(gset)
#> 'ExpressionSet'
```

Data structure of ExpressionSet object

Expression matrix: exprs()

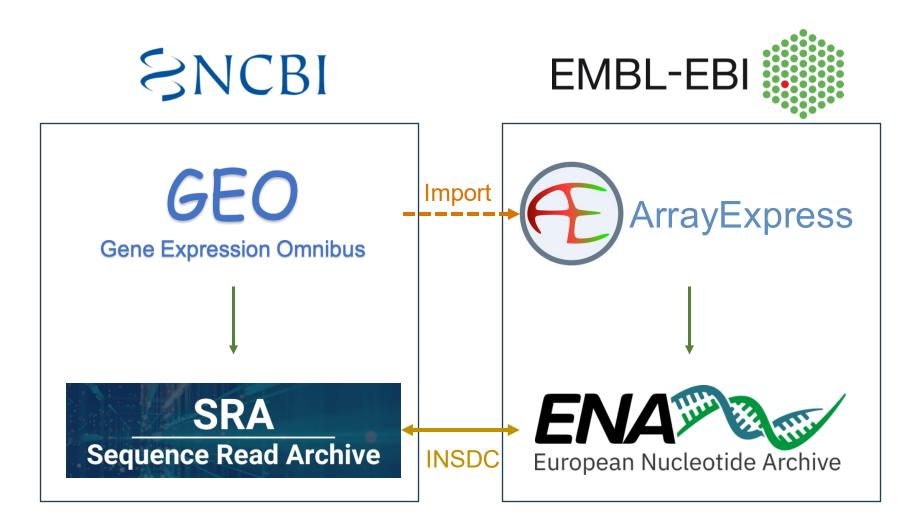
exprs(gset)							□ ↑	↓ ± ∓	Î
			A matrix: 54	4675 × 8 of type	dbl				
	GSM3526020	GSM3526021	GSM3526022	GSM3526023	GSM3526024	GSM3526025	GSM3526026	GSM3526027	_
1007_s_at	9.54885	9.76681	9.67118	9.67082	9.70476	9.66295	9.67862	9.21119	
1053_at	8.61334	7.69760	8.53742	8.06942	8.17666	7.85192	7.75730	7.99570	
117_at	6.20375	6.34466	6.46556	6.30172	6.45548	6.62242	6.21767	6.53739	
121_at	9.09007	8.87642	9.23535	8.73644	8.78167	9.16652	8.67744	9.43601	
1255_g_at	3.85190	3.68445	3.89538	3.59723	3.91981	3.71919	3.68602	3.75776	
1294_at	7.95796	7.97800	7.81674	8.06442	7.66563	6.96192	8.01771	7.41316	
1316_at	7.43911	7.65307	8.00262	7.18998	7.71863	7.73945	7.14290	7.64515	
1320_at	6.55236	6.48452	6.36801	6.44498	6.65787	6.30494	6.25951	6.44187	

Phenotype/sample data: pData()

pData(gset)										⊕ ↑ ↓ ±	7	Î
	title	geo_accession	status	submission_date	last_update_date	type	channel_count	source_name_ch1	organism_ch1	characteristics_ch1	ı	con
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	,	
GSM3526020	ASC- 3004- control	GSM3526020	Public on Jan 24 2019	Dec 20 2018	Jan 24 2019	RNA	1	subcutaneous adipose tissue, control	Homo sapiens	female type: contro	ı	
GSM3526021	ASC- 3006- PCOS	GSM3526021	Public on Jan 24 2019	Dec 20 2018	Jan 24 2019	RNA	1	subcutaneous adipose tissue, PCOS	Homo sapiens	female type: PCOS	···	
GSM3526022	ASC- 3010- PCOS	GSM3526022	Public on Jan 24 2019	Dec 20 2018	Jan 24 2019	RNA	1	subcutaneous adipose tissue, PCOS	Homo sapiens	female type: PCOS	s	
GSM3526023	ASC- 3019- PCOS	GSM3526023	Public on Jan 24 2019	Dec 20 2018	Jan 24 2019	RNA	1	subcutaneous adipose tissue, PCOS	Homo sapiens	female type: PCOS	···	

AnnotGPL=TRUE / FALSE

AnnotGPL: A boolean defaulting to FALSE as to whether or not to use the Annotation GPL information. These files are nice to use because they contain up-to-date information remapped from Entrez Gene on a regular basis.


AnnotGPI = TRUF | names (fData(gset))

'ID' · 'Gene title' · 'Gene symbol' · 'Gene ID' · 'UniGene title' · 'UniGene symbol' · 'UniGene ID' · 'Nucleotide Title' · 'GI' · 'GenBank Accession' · 'Platform_CLONEID' · 'Platform_ORF' · 'Platform_SPOTID' · 'Chromosome location' · 'Chromosome annotation' · 'GO:Function' · 'GO:Process' · 'GO:Component' · 'GO:Function ID' · 'GO:Process ID' · 'GO:Component ID'

AnnotGPL=FALSE names(fData(gset1))

'ID' · 'GB_ACC' · 'SPOT_ID' · 'Species Scientific Name' · 'Annotation Date' · 'Sequence Type' · 'Sequence Source' · 'Target Description' · 'Representative Public ID' · 'Gene Title' · 'Gene Symbol' · 'ENTREZ_GENE_ID' · 'RefSeg Transcript ID' · 'Gene Ontology Biological Process' · 'Gene Ontology Cellular Component' · 'Gene Ontology Molecular Function'

Collaboration and data exchange between NCBI and EMBL-EBI repositories

INSDC (International Nucleotide Sequence Database Collaboration) ensures data synchronization among NCBI (SRA), EBI (ENA), and DDBJ (DRA, Japan).

Databases for archiving and distributing human-sensitive data

Human genomics data, Controlled data

NCBI (U.S.)

https://dbgap.ncbi.nlm.nih.gov/

NIH-funded human genomic studies

EMBL-EBI (Europe)

https://ega-archive.org/

Common Features of dbGaP and EGA

Purpose

Both are repositories for human genomic and phenotypic data that require controlled access due to privacy and ethical concerns.

Data type

Store individual-level, potentially identifiable human data — such as genotype, sequencing, clinical, and phenotype data.

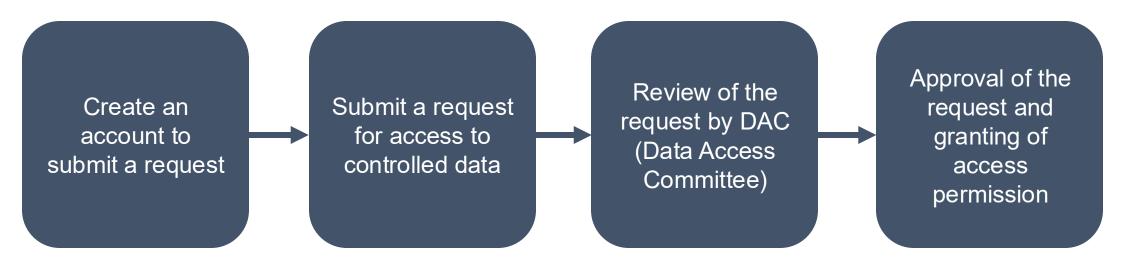
Controlled access model

Researchers must apply for access via a Data Access Committee (DAC), specifying study purpose and data-use agreement.

Ethical and legal compliance

Governed by informed consent, IRB/ethics approval, and data-use restrictions defined by the original study.

Metadata and study registration


Each study includes metadata describing cohort design, sample type, and consent group.

Data security

Both provide secure infrastructure for storage, transfer, and auditing of sensitive datasets.

dbGaP / EGA Data Access Procedure

https://grants.nih.gov/policy-and-compliance/policy-topics/sharing-policies/accessing-data/dbgap https://ega-archive.org/access/request-data/how-to-request-data/

- dbGAP: only PIs can create the account (eRA)
- Research proposal
- Data Access
 Agreement
 (Institute to Institute)

Who can apply for access to controlled data in dbGaP?

Those eligible to apply for data access must be a permanent employee of their institution and either:

- At a level equivalent to a tenure-track professor
- Senior scientist with responsibilities that may include laboratory or research program administration and oversight.

Laboratory staff and trainees such as graduate students and postdoctoral fellows are **NOT** permitted to submit data access requests in dbGaP. However, they may be part of projects using such data when the projects are overseen by an eligible user.

Investigators not affiliated with NIH must have an **eRA** account to access dbGaP.

Submit a request to access controlled data in EGA

ABOUT

DISCOVERY

SUBMISSION

ACCESS

Datasets - [EGAD00001008129

WES data

WES FASTq files of 76 bulk pre-treatment tumors and 76 matched peripheral blood mononuclear cells from GO30140 group A

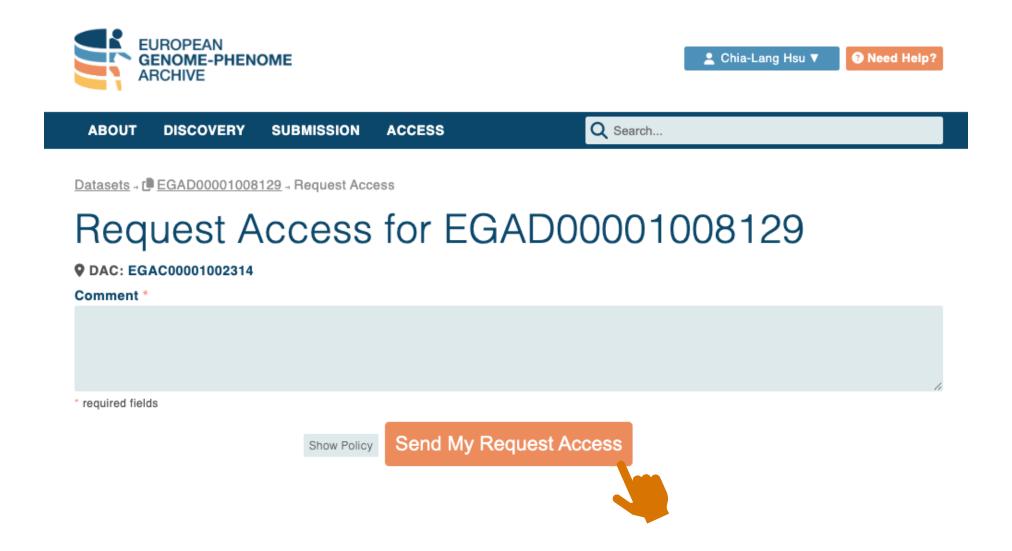
¶ 16/09/2021
♠ 152 samples
♥ DAC: EGAC00001002314
♥ Technology: Illumina HiSeq 4000

Access Policy

1 Study

304 Files (781.7 GB)

▲ Metadata


Request Access

Genentech Data Access Agreement for Academic Institutions

DSC: Academic Data Access Agreement vMar2021 1GENENTECH DATA ACCESS COMMITTEEDATA ACCESS AGREEMENTThis Data A ccess Agreement ("Agreement") between Genentech, Inc. ("Genentech") and User and User Institution (as defined below) governs the term s on which access will begranted to thegenotype data obtained from Genentech. In signing this Agreement, User and User Institution agre e to be bound by the terms and conditions of access set out in this Agreement. For the sake of clarity, the terms of access set out in this Agreement. reement shall governactivities conducted by the User and the User Institution (as defined below). UserInstitution and User are referred to within the Agreement as "You" and "Your" forconvenience only. Definitions: gRED means Genentech Research and Early Development. Dat a means all and any human genetic data generated by gRED and requested by User throughsubmission of an Application for Access to...


show policy full description

Submit a request to access controlled data in EGA

Accessing TCGA data: GDC data portal

https://portal.gdc.cancer.gov/

Accessing TCGA data: GDC data portal

Open-access data can be downloaded directly, whereas **controlled-access data** require approval through dbGaP before download.

Cart	Access 🕏	File Name 🍦	Cases	Project 🕏	Data Category 🕏	Data Format 🜲	File Size 💂	Annotations
Ħ	Open	☑ <u>6157fcee-36c0-4e9f-a086-01d64b8db3de_noid_Grn.idat</u>	Я 1	☑ TCGA-BRCA	DNA Methylation	IDAT	719.56 kB	0
F	Controlled	☑ 907fec58-2e0f-4501-b0a8-150b98e7ca7b.wxs.muse.raw_somatic_mutation.vcf.gz	Я 1	☑ TCGA-BRCA	Simple Nucleotide Variation	VCF	34.33 kB	2
F	Open	☑ TCGA-E2-A15C-01A-31D-A895-36.WholeGenome.RP-1657.cr.igv.reheader.seg.txt	<mark>Л</mark> 1	☐ TCGA-BRCA	Copy Number Variation	TXT	31.08 kB	0
F	Controlled	☐ TCGA_BRCA.637493d7-3d92-4df3-8442-e1c2b624264a.wxs.Pindel.somatic_annotation.vcf.gz	Я 1	☐ TCGA-BRCA	Simple Nucleotide Variation	VCF	186.18 kB	0
F	Controlled	☑ TCGA-E2-A15C-01A-31R-A12C-13 mirna gdc realn.bam	Д 1	☐ TCGA-BRCA	Sequencing Reads	BAM	165.84 MB	0
F	Controlled	☑ df5d5895-ac41-43f5-a9af-ec3f0f8a940e.wxs.Pindel.aliquot.maf.gz	<mark>Л</mark> 1	☐ TCGA-BRCA	Simple Nucleotide Variation	MAF	85.84 kB	0

Accessing processed TCGA data: R package TCGABiolink

TCGAbiolinks

This is the released version of TCGAbiolinks; for the devel version, see TCGAbiolinks.

TCGAbiolinks: An R/Bioconductor package for integrative analysis with GDC data

Bioconductor version: Release (3.22)

The aim of TCGAbiolinks is: i) facilitate the GDC open-access data retrieval, ii) prepare the data using the appropriate pre-processing strategies, iii) provide the means to carry out different standard analyses and iv) to easily reproduce earlier research results. In more detail, the package provides multiple methods for analysis (e.g., differential expression analysis, identifying differentially methylated regions) and methods for visualization (e.g., survival plots, volcano plots, starburst plots) in order to easily develop complete analysis pipelines.

Author: Antonio Colaprico, Tiago Chedraoui Silva, Catharina Olsen, Luciano Garofano, Davide Garolini, Claudia Cava, Thais Sabedot, Tathiane Malta, Stefano M. Pagnotta, Isabella Castiglioni, Michele Ceccarelli, Gianluca Bontempi, Houtan Noushmehr

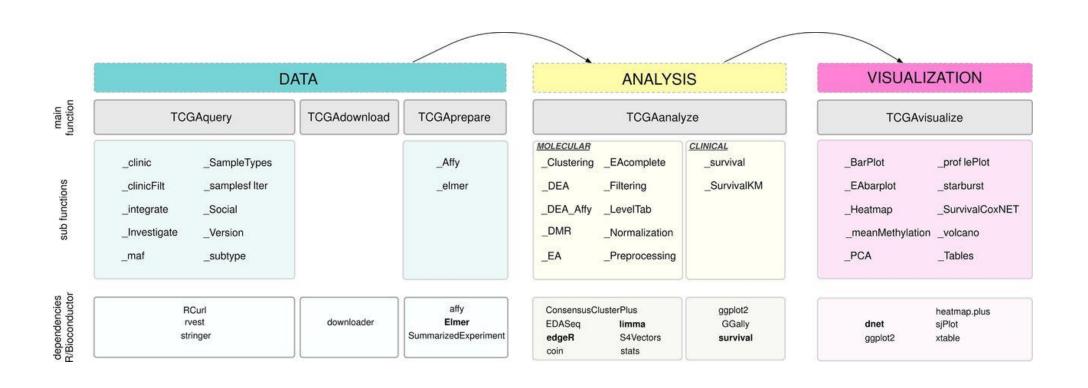
Maintainer: Tiago Chedraoui Silva <tiagochst at gmail.com>, Antonio Colaprico <axc1833 at med.miami.edu>

Citation (from within R, enter citation("TCGAbiolinks")):

Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot T, Malta TM, Pagnotta SM, Castiglioni I, Ceccarelli M, Bontempi G, Noushmehr H (2015). "TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data." *Nucleic Acids Research*. doi:10.1093/nar/gky1507, http://doi.org/10.1093/nar/gky1507.

Silva, C T, Colaprico, Antonio, Olsen, Catharina, D'Angelo, Fulvio, Bontempi, Gianluca, Ceccarelli, Michele, Noushmehr, Houtan (2016). "TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages." F1000Research, 5.

Mounir, Mohamed, Lucchetta, Marta, Silva, C T, Olsen, Catharina, Bontempi, Gianluca, Chen, Xi, Noushmehr, Houtan, Colaprico, Antonio, Papaleo, Elena (2019). "New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx." PLoS computational biology, 15(3), e1006701.


Installation

To install this package, start R (version "4.5") and enter:

```
if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("TCGAbiolinks")
```

Overview of TCGAbiolinks functions.

Accessing processed TCGA data: cBioPortal

https://www.cbioportal.org/

Data Sets Web API Tutorials/Webinars FAQ News Visualize Your Data About cBioPortal Installations PAQ Donate

Name -		Reference	All	Mutations	CNA	RNA- Seq
Acinar Cell Carcinoma of the Pancreas (JHU, J Pathol 2014)	<u>±</u>	Jial et al. J Pathol 2014	23	23	0	0
Acral Melanoma (TGEN, Genome Res 2017)	±	Liang et al. Genome Res 2017	38	38	38	36
Acute Leukemias of Ambiguous Lineage (TARGET GDC, 2025)	±		251	123	0	0
Acute Lymphoblastic Leukemia (St Jude, Nat Genet 2015)	±	Andersson et al. Nat Genet 2015	93	93	0	0
Acute Lymphoblastic Leukemia (St Jude, Nat Genet 2016)	±	Zhang et al. Nat Genet 2016	73	73	0	0
Acute Myeloid Leukemia (OHSU, Cancer Cell 2022)	±	Bottomly et al. Cancer Cell 2022	942	903	0	698
Acute Myeloid Leukemia (OHSU, Nature 2018)	±	Tyner et al. Nature 2018	672	622	0	451
Acute Myeloid Leukemia (TARGET GDC, 2025)	±		2766	584	92	0
Acute Myeloid Leukemia (TCGA GDC, 2025)	±		200	72	190	0
Acute Myeloid Leukemia (TCGA, Firehose Legacy)	±		200	197	191	173
Acute Myeloid Leukemia (TCGA, NEJM 2013)	±	TCGA, NEJM 2013	200	200	191	173
Acute Myeloid Leukemia (TCGA, PanCancer Atlas)	±	TCGA, Cell 2018	200	200	191	173

Accessing processed TCGA data: Xena

https://xenabrowser.net/

DATA SETS

VISUALIZATION

TRANSCRIPTS

SINGLECELL

DATA HUBS

VIEW MY DATA

HELP

MORE TOOLS

237 Cohorts, 2256 Datasets

10x visium Human Ovarian Cancer (7 datasets)

10x visium Human Ovarian Cancer enhanced resolution (3 datasets)

10x visium Mouse Brain Coronal (6 datasets)

10x visium Mouse Sagittal Anterior1 (6 datasets)

10x visium V1_Breast_Cancer_Block_A_Section_1 (4 datasets)

Acute lymphoblastic leukemia (Mullighan 2008) (3 datasets)

Breast Cancer (Caldas 2007) (3 datasets)

Breast Cancer (Chin 2006) (3 datasets)

Breast Cancer (Haverty 2008) (2 datasets)

Breast Cancer (Hess 2006) (2 datasets)

Breast Cancer (Miller 2005) (2 datasets)

Breast Cancer (vantVeer 2002) (2 datasets)

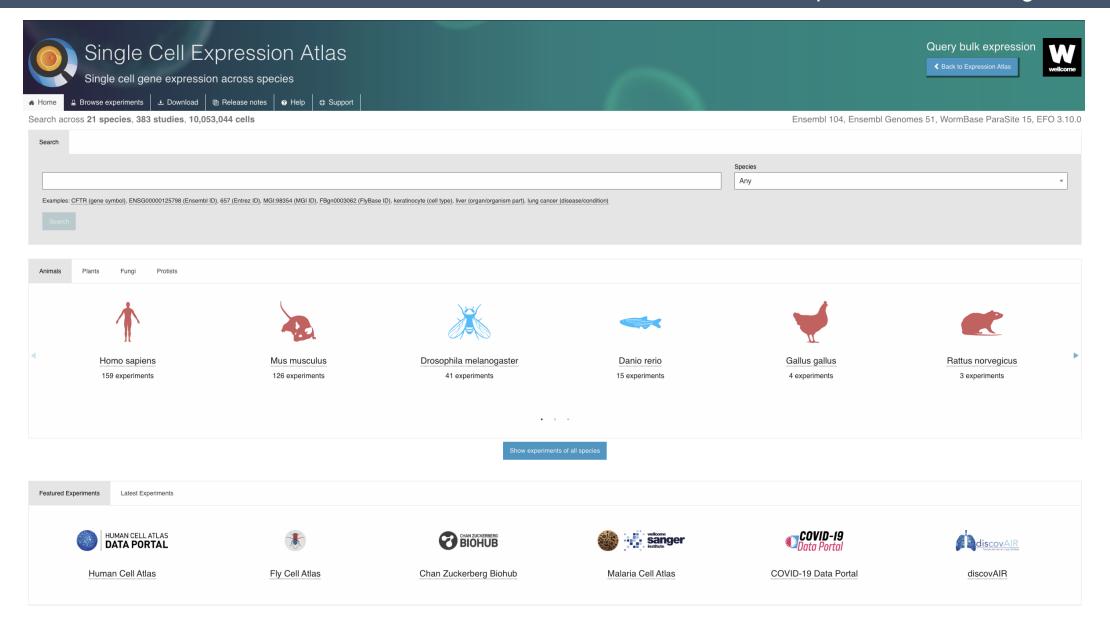
Breast Cancer (Vijver 2002) (2 datasets)

Breast Cancer (Yau 2010) (2 datasets)

Breast Cancer Cell Lines (Heiser 2012) (4 datasets)

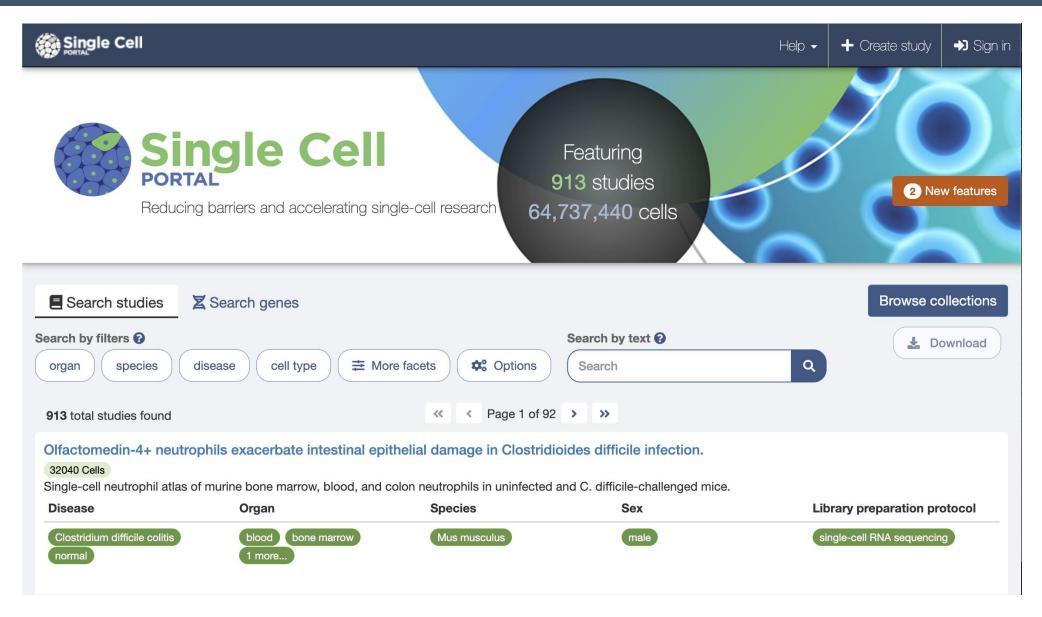
Breast Cancer Cell Lines (Neve 2006) (2 datasets)

Cancer Cell Line Encyclopedia (Breast) (4 datasets)


Cancer Cell Line Encyclopedia (CCLE) (9 datasets)

Active Data Hubs

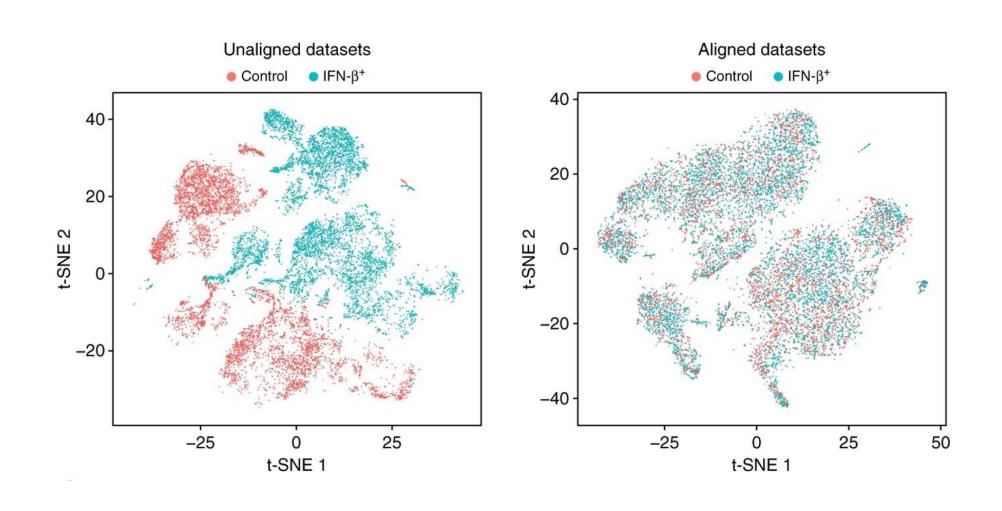
- My computer hub
- ✓ UCSC Public Hub
- ✓ TCGA Hub
- ▼ Pan-Cancer Atlas Hub
- ✓ ICGC Hub
- PCAWG Hub
- ✓ UCSC Toil RNA-seq Recompute
- Treehouse Hub
- GDC Hub
- ATAC-seq Hub
- Kids First Hub
- https://previewsinglecell.xenahubs.net
- jupyter notebook


Single Cell Expression Atlas

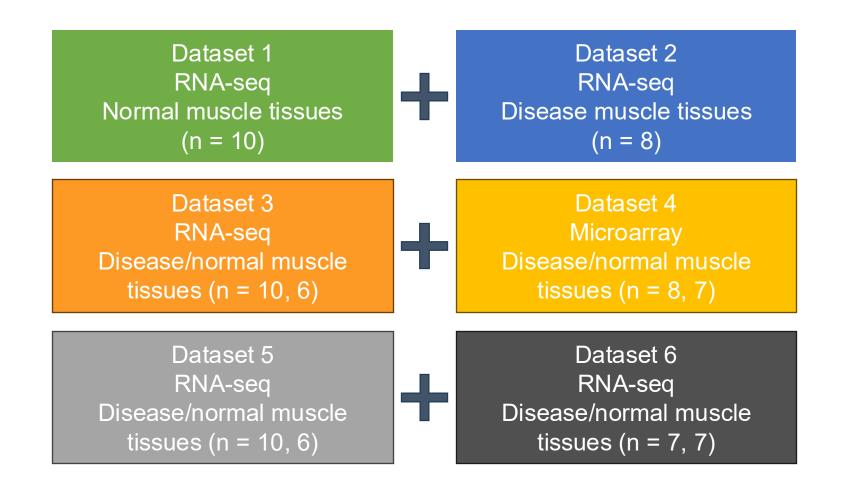
https://www.ebi.ac.uk/gxa/sc/home

Single Cell Portal

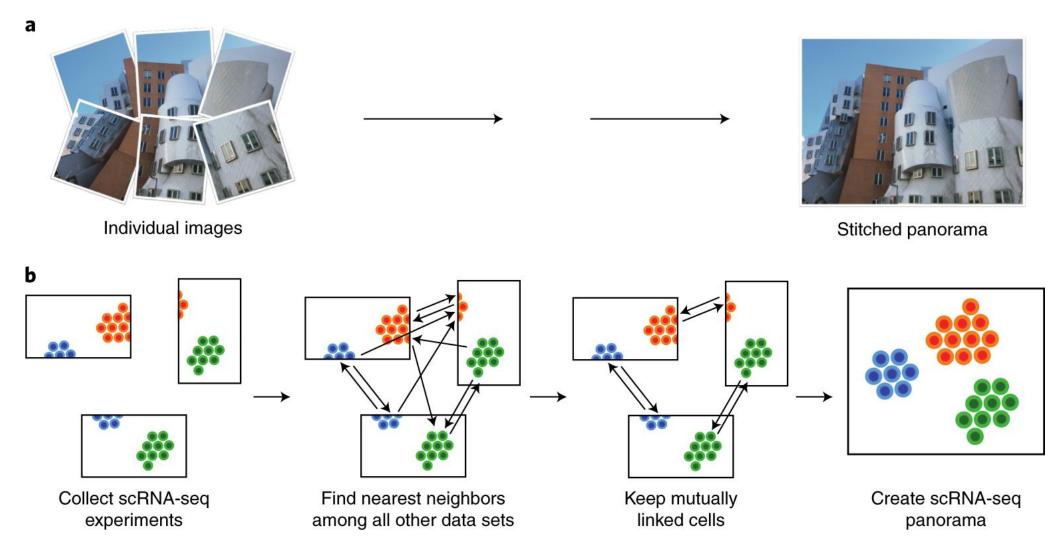
https://singlecell.broadinstitute.org/

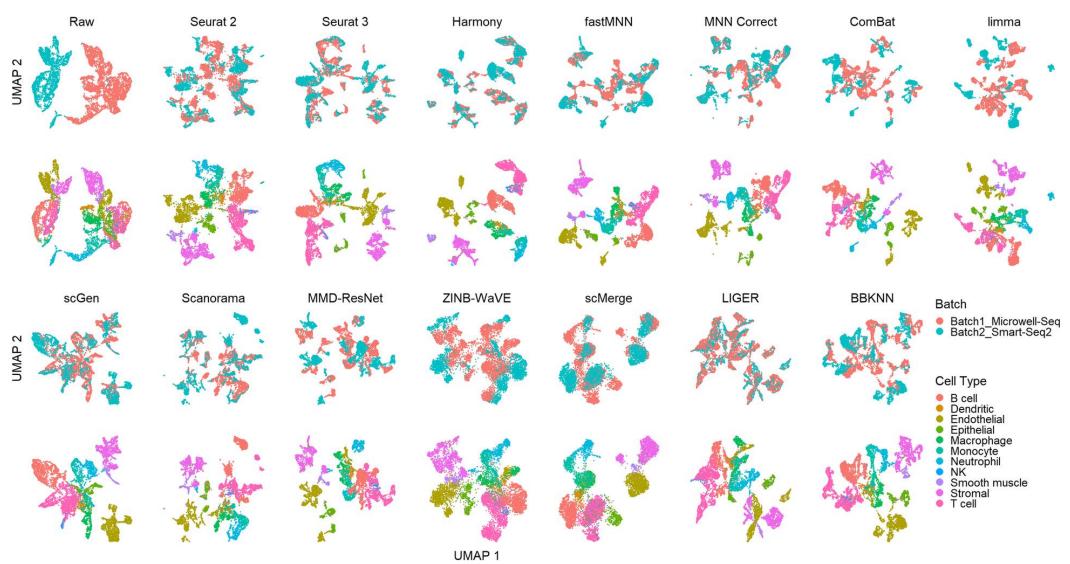

Comparison: Single Cell Expression Atlas vs. Single Cell Portal

	Single Cell Expression Atlas	Single Cell Portal
Host Organization	EMBL-EBI	Broad Institute
Purpose	Centralized resource for exploring standardized, reprocessed single-cell datasets across multiple species	Platform for uploading, sharing, and interactively exploring single-cell studies
Data Source	Public datasets collected and re- analyzed using uniform pipelines	Researcher-submitted studies, often directly from publications
Standardization Level	High — datasets are normalized and annotated for cross-study comparison	Variable — depends on individual study submissions
User Uploads	Not user-uploadable (curated by EMBL-EBI team)	Users can upload and publish their own datasets
Data Download Options	Processed (normalized) data, metadata, and cell type annotations	Raw and/or processed files; downloadable visualizations

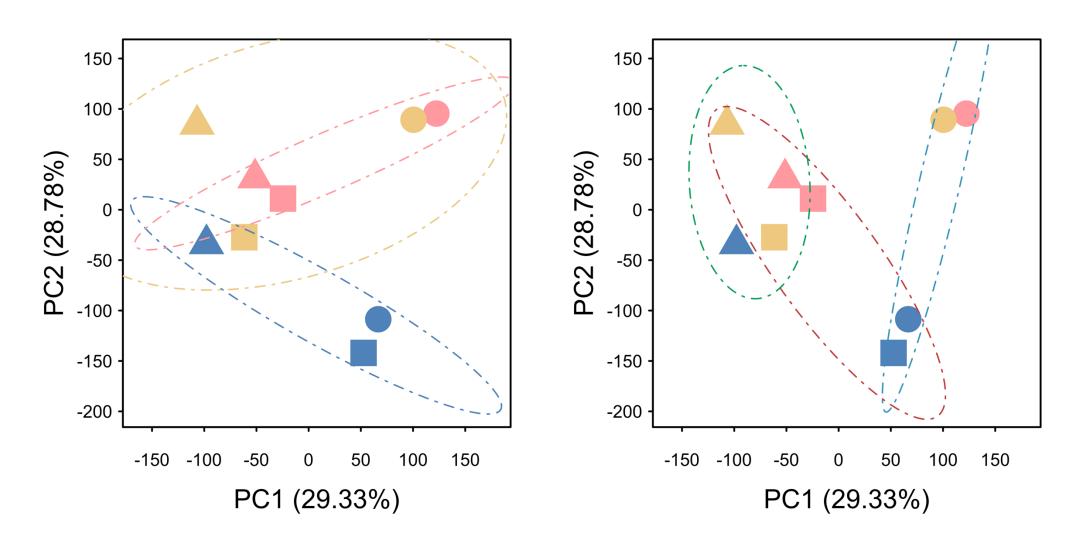

What is a batch effect?

- Non-biological variations introduced by experimental or technical factors.
- Can mask true biological signals or create false-positive differences.
- Common in public datasets integrated from different studies or platforms.

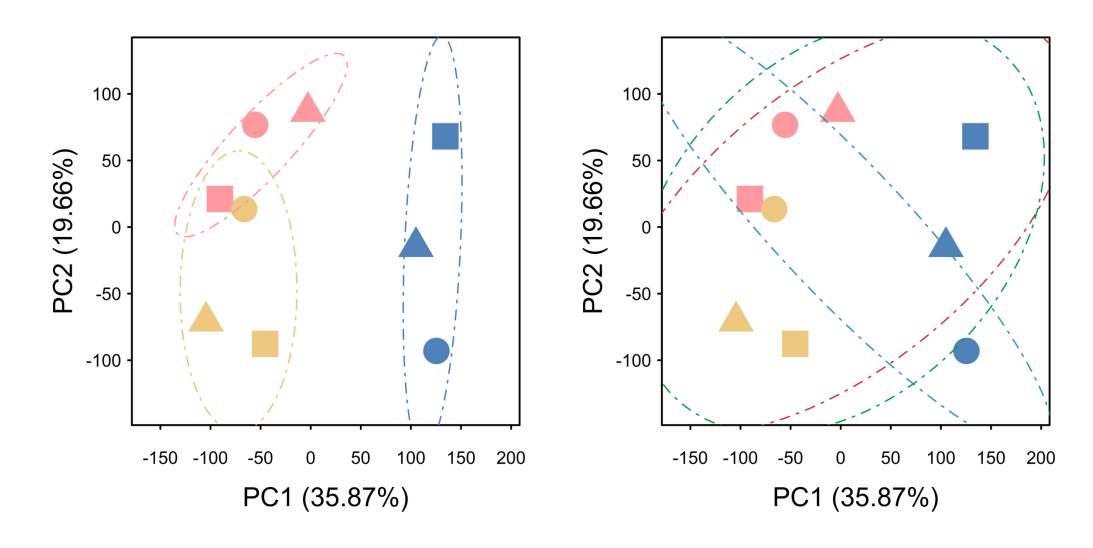

Batch correction is very important for data integration


Scenarios: Is it possible to remove the batch effect?

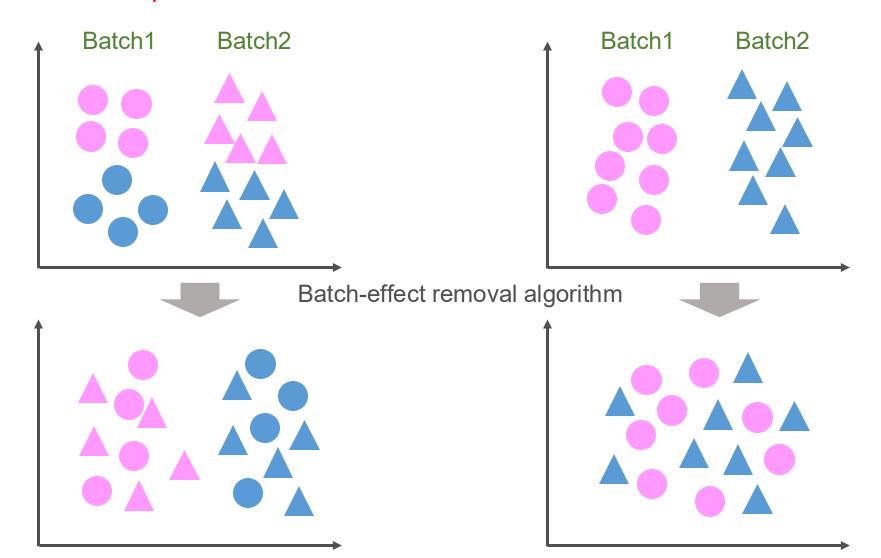
Single-cell data integration and batch effect correction



Batch-effect correction methods: which is best?


Before batch-effect removal

Color indicates biological groups; shape indicates batches


After batch-effect removal

Color indicates biological groups; shape indicates batches

How dose 'batch effect removal' work?

Assumption: The distribution of biological groups (e.g., disease vs control) is similar across batches.

Batch effect adjustment for RNA-seq count data: ComBat-seq

https://github.com/zhangyuqing/ComBat-seq

```
# Install from GitHub
install.packages("devtools")
devtools::install_github("zhangyuqing/sva-devel")

library(sva)
adjusted <- ComBat_seq(count_matrix, batch=batch)</pre>
```

Batch effect adjustment for normalized expression matrix (RNA-seq/microarray)

```
## Using limma
library(limma)
adjusted <- limma::removeBatchEffect(exprs_matrix, batch=batch)

## Using ComBat
library(sva)
adjusted <- sva::ComBat(exprs_matrix, batch=batch)</pre>
```

An alternative to integration: Meta-Analysis

Meta-analysis strategies:

- Identify common or consensus DE genes
- Combine p-values across studies
- Combine effect sizes across datasets
- Combine gene rankings

R packages:

GeneMeta, metaRNASeq, metafor, RobustRankAggreg